Chairs and seats – Back movement resiliently opposed in operating position – Back adjusts independent of seat
Reexamination Certificate
2000-01-27
2002-04-09
Nelson, Jr., Milton (Department: 3636)
Chairs and seats
Back movement resiliently opposed in operating position
Back adjusts independent of seat
C297S284400
Reexamination Certificate
active
06367877
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention concerns a chair control having an adjustable energy mechanism for supporting the back of a chair during recline.
A synchrotilt chair is described in U.S. Pat. Nos. 5,050,931; 5,567,012; 4,744,603; and 4,776,633 (to Knoblock et al.) having a base assembly with a control, a reclineable back pivoted to the control, and a seat operably mounted to the back and control for synchronous motion as the back is reclined. This prior art chair incorporates a semi-rigid flexible shell that, in combination with the chair support structure, provides a highly controlled postural support during the body movements associated with tasks/work (e.g., when the back is in an upright position) and during the body movements associated with recline/relaxation (e.g., when the chair is in a reclined position). This prior art chair moves a seated user's upper body away from the user's work surface as the user reclines, thus providing the user with more area to stretch. However, we have discovered that often users want to remain close to their work surface and want to continue to work at the work surface, even while reclining and relaxing their body and while having continued postural support. In order to do this in the synchrotilt chair of U.S. Pat. No. 5,050,931, users must scoot their chair forwardly after they recline so that they can still easily reach their work surface. They must also push away when they move back to an upright position to avoid being pushed against their work surface. “Scooting” back and forth once or twice is perhaps not a serious problem, but often users, such as office workers using computers, are constantly moving between upright and reclined positions, such that the process of repeatedly scooting back and forth becomes annoying and disconcerting. In fact, moving around and not staying in a single static position is important to good back health in workers whose jobs require a lot of sitting.
Another disadvantage of moving a seated user's upper body significantly rearwardly upon recline is that the user's overall center of gravity moves rearward. By providing a more constant center of gravity, it is possible to design a reclineable chair having greater recline or height adjustment without sacrificing the overall stability of the chair. Also, reclineable chairs that move a seated user's upper body significantly rearwardly have a relatively large footprint, such that these chairs may bump into furniture or a wall when used in small offices or in a compact work area. Still another disadvantage is that large springs are required in these existing reclineable chairs for back support, which springs are difficult to adjust due to the forces generated by the springs. However, the tension of these springs preferably should be adjustable so that heavier and lighter weight users can adjust the chair to provide a proper amount of support.
Concurrently, seated users want to be able to easily adjust the spring tension for providing support to the back during recline. Not only do heavier/larger people need greater/firmer back support than lighter/smaller people, but the amount of support required changes at a greater rate during recline. Specifically, lighter/smaller people need a lesser initial level of support as they begin to recline and need a moderately increased level of support as they continue to recline; while heavier/larger people need a significantly higher minimum initial level of support as they begin to recline and need a significantly increased level of support as they continue to recline. Restated, it is desirable to provide a chair that is easily adjustable in its initial level of support to the back during initial recline and that automatically also adjusts the rate of increase in support during recline. Further, it is desirable to provide a mechanism to allow such an easy adjustment (1) while seated; (2) by a relatively weaker person; (3) using easily manipulatable adjustment controls; and (4) while doing so with a control that is not easily damaged by a relatively strong person who may “overtorque” the control. Further, a compact spring arrangement is desired to provide optimal appearance and to minimize material cost and part size.
Manufacturers are becoming increasingly aware that adequate lumbar support is very important to prevent lower back discomfort and distress in people who are seated for long periods, such as office workers or vehicle drivers and passengers. A problem is that the spinal shape and body shape of people vary tremendously, such that it is not possible to satisfy all people with the same shape. Further, the desired level of firmness or force of support in the lumbar area is different for each person and may vary as a seated user performs different tasks and/or reclines in the chair and/or becomes fatigued. In fact, a static lumbar support is undesirable. Instead, it is desirable to provide different lumbar shapes and levels of support over a work day. Accordingly, an adjustable lumbar system is desired that is constructed to vary the shape and force of lumbar support. At the same time, the adjustable lumbar system must be simple and easy to operate, easily reached while seated, mechanically non-complex and low cost, and aesthetically/visually pleasing. Preferably, adjustment of the shape and/or force in the lumbar area should not result in wrinkles in the fabric of the chair, nor unacceptable loose/saggy patches in the fabric.
Modem customers and chair purchasers demand a wide variety of chair options and features, and a number of options and features are often designed into chair seats. However, improvement in seats is desired so that a seated user's weight is adequately supported on the chair seat, but simultaneously so that the thigh area of a seated user is comfortably, adjustably supported in a manner that adequately allows for major differences in the shape and size of a seated user's buttocks and thighs. Additionally, it is important that such options and features be incorporated into the chair construction in a way that minimizes the number of parts and maximizes the use of common parts among different options, maximizes efficiencies of manufacturing and assembling, maximizes ease of adjustment and the logicalness of adjustment control positioning, and yet that results in a visually pleasing design.
Accordingly, a chair construction solving the aforementioned problems is desired.
SUMMARY OF INVENTION
One aspect of the present invention includes a seating unit comprising a frame member that includes a back bendable to different shapes that engages and ergonomically supports a seated user's lumbar and torso. A belt bracket is attached to the back with the belt bracket having flanges that extend from the back. The flanges pivotally connect the back to the frame member at a first connection. The back is pivoted to the frame member at a second connection spaced vertically from the first connection. Further, the back is constrained by the first and second connections and by the flanges so that a lumbar portion of the back is adapted to engage and provide ergonomic and comfortable lumbar support to the seated user.
Another aspect of the present invention is a back construction that comprises a back frame member with the back having a forwardly-protruding lumbar support section that is characteristically flexible and bendable and configured to engage and posturally support a seated user. The back can be also flexed to a plurality of different convex shapes. The top and bottom connections pivotally connected the back to the back frame at locations above and below the lumbar support section. An adjustable force-generating mechanism is operably attached to the back. The force-generating mechanism is constructed to provide an adjustable biasing force that adjustably biases the lumbar support section forwardly for optimal lumbar support. The force-generating mechanism characteristically provides the biasing force without forcing a shape change in the back.
In another
Dammermann Arnold B.
DeKraker Larry
Ekdahl Kevin A.
Heidmann Kurt R.
Klaasen, II Gardner J.
Jr. Milton Nelson
Price Heneveld Cooper DeWitt & Litton
Steelcase Development Corporation
LandOfFree
Back for seating unit does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Back for seating unit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Back for seating unit will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2878286