Automatically configuring storage array including a...

Electrical computers and digital data processing systems: input/ – Input/output data processing – Peripheral configuration

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S100000, C710S005000, C711S114000, C711S116000, C711S132000, C711S202000, C709S231000, C379S088180, C714S006130

Reexamination Certificate

active

06247069

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of writing data to and reading data from media storage devices. More particularly, the present invention relates to the field of writing data to and reading data from media storage devices within a network of devices.
BACKGROUND OF THE INVENTION
The IEEE 1394-1995 standard, “1394 Standard For A High Performance Serial Bus,” is an international standard for implementing an inexpensive high-speed serial bus architecture which supports both asynchronous and isochronous format data transfers. In addition, the IEEE 1394-1995 bus has a universal clock called the cycle timer. This clock is synchronized on all nodes. Isochronous data transfers are real-time transfers which take place based on the universal clock such that the time intervals between significant instances have the same duration at both the transmitting and receiving applications. Each packet of data transferred isochronously is transferred in its own time period. An example of an ideal application for the transfer of data isochronously would be from a video recorder to a television set. The video recorder records images and sounds and saves the data in discrete chunks or packets. The video recorder then transfers each packet, representing the image and sound recorded over a limited time period, during that time period, for display by the television set. The IEEE 1394-1995 standard bus architecture provides multiple independent channels for isochronous data transfer between applications. A six bit channel number is broadcast with the data to ensure reception by the appropriate application. This allows multiple applications to simultaneously transmit isochronous data across the bus structure. Asynchronous transfers are traditional reliable data transfer operations which take place as soon as arbitration is won and transfer a maximum amount of data from a source to a destination.
The IEEE 1394-1995 standard provides a high-speed serial bus for interconnecting digital devices thereby providing a universal I/O connection. The IEEE 1394-1995 standard defines a digital interface for the application thereby eliminating the need for an application to convert digital data to analog data before it is transmitted across the bus. Correspondingly, a receiving application will receive digital data from the bus, not analog data, and will therefore not be required to convert analog data to digital data. The cable required by the IEEE 1394-1995 standard is very thin in size compared to other bulkier cables used to connect such devices in other connection schemes. Devices can be added and removed from an IEEE 1394-1995 bus while the bus is operational. If a device is so added or removed the bus will then automatically reconfigure itself for transmitting data between the then existing nodes. A node is considered a logical entity with a unique address on the bus structure. Each node provides in a standard address space, an identification ROM, a standardized set of control registers and in addition, its own address space.
The IEEE 1394-1995 standard defines a protocol as illustrated in FIG.
1
. This protocol includes a serial bus management block
10
coupled to a transaction layer
12
, a link layer
14
and a physical layer
16
. The physical layer
16
provides the electrical and mechanical connection between a device and the IEEE 1394-1995 cable. The physical layer
16
also provides arbitration to ensure that all devices coupled to the IEEE 1394-1995 bus have arbitrated access to the bus as well as actual data transmission and reception. The link layer
14
provides data packet delivery service for both asynchronous and isochronous data packet transport. This supports both asynchronous data transport, using an acknowledgement protocol, and isochronous data transport, providing an un-acknowledged real-time guaranteed bandwidth protocol for just-in-time data delivery. The transaction layer
12
supports the commands necessary to complete asynchronous data transfers, including read, write and lock. The serial bus management block
10
contains an isochronous resource manager for managing the resources associated with isochronous data transfers. The serial bus management block
10
also provides overall configuration control of the serial bus in the form of optimizing arbitration timing, guarantee of adequate electrical power for all devices on the bus, assignment of the cycle master, assignment of isochronous channel and bandwidth resources and basic notification of errors.
The AV/C Command Set is a command set used for transactions to and from consumer audio/video equipment over an IEEE 1394-1995 serial bus. This AV/C command set makes use of the Function Control Protocol (FCP) defined by IEC-61883, the ratified international standard for the transport of audio/video command requests and responses. AV/C commands are transmitted through AV/C transactions. An AV/C transaction consists of one AV/C command frame addressed to the target node's FCP_Command register and zero or more AV/C response frames addressed to the requesting node's FCP_Response register.
Each audio/video unit or subunit can implement a subset of the AV/C command set. An unsupported command received by an audio/video unit is rejected with a not implemented response. Support for the different commands is characterized as mandatory, recommended, optional and vendor-dependent. A mandatory command is supported by any audio/video device that claims compliance with the AV/C command set and that implements the audio/video unit or subunit type for which the command is defined. An AV/C compliant device is identified by an entry within its configuration read-only memory (ROM). A recommended command is optional for an AV/C compliant device, but represents a basic functionality, such as video and audio insert modes for a VCR subunit's record command. If the device supports a unit or subunit type that has the functionality corresponding to the command, it is recommended that the command be implemented. An optional command is optional for an AV/C compliant device. Support for and interpretation of a vendor-dependent command are defined by the device vendor.
AV/C commands are grouped into four command types including control, status, inquiry and notify command types. A control command is sent by a controller to another audio/video device, the target, to instruct the target to perform an operation. A target that receives a control command will return an AV/C response frame including either a not implemented, accepted, rejected or interim response code. The target will return a not implemented response code when the target does not support the control command specified or the command is addressed to a subunit not implemented by the target. The target will return an accepted response code when the target implements the control command specified and the current state of the target permits execution of the command. The target will return a rejected response code when the target implements the control command specified but the current state of the target does not permit execution of the command. The target will return an interim response code if the control command specified is implemented by the target, but the target is unable to respond with either an accepted or rejected response code within 100 milliseconds. Unless a subsequent bus reset causes the AV/C transaction to be aborted, the target will ultimately return a response frame with an accepted or rejected response code after returning an interim response code.
A status command is sent by a controller to an audio/video device to request the current status of the target device. Status commands may be sent to either audio/video units or subunits. A target that receives a status command will return an AV/C response frame including either a not implemented, rejected, in transition or stable response code. A target will return a not implemented status response code when the target does not support the status command specified or the command is addressed to a su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automatically configuring storage array including a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automatically configuring storage array including a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automatically configuring storage array including a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446398

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.