Automated transaction distribution system and method...

Telephonic communications – Centralized switching system – Call distribution to operator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S266080

Reexamination Certificate

active

06636598

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to automated transaction distribution systems wherein transactions (call, text chat, email, fax, etc.) are screened and assigned to qualified agents on behalf of transaction initiators.
2. Description of the Prior Art
Automated transaction distribution systems use automated procedures to distribute transactions to available agents employed to handle the transactions. According to these automated procedures, an attempt is made to match a transaction to the best-qualified agent having the skills required to handle the particular requirements of the transaction. For example, Spanish language transactions are preferably distributed to a Spanish speaking agent with the highest Spanish language proficiency level, and so on. In some cases, a transaction may be distributed to an agent that is not the best qualified because better qualified agents are occupied handling other transactions, are on break, are not logged in, or are otherwise unavailable. Subsequently, the original agent may place the transaction participant on hold to await a better-qualified agent. For example, a transaction relating to a particular product may be initially directed to an available agent even though the agent lacks detailed knowledge of the product. If the original agent does not have the knowledge required to complete the transaction, the transaction must be redirected to another agent. In some cases, a transaction may be redirected multiple times during its lifetime until a suitable agent is found.
Transaction redirection is frustrating to transaction participants who want to conclude transactions expeditiously and do not want to repeat the same information to multiple agents. Accordingly, there is a need in an automated transaction distribution system for an agent assignment system and method that allows transactions to be matched to the most suitable agent, and preferably on the first matching attempt.
SUMMARY OF THE INVENTION
The foregoing problems are solved and an advance in the art is obtained by a novel automated transaction distribution system and method that attempts to match a transaction (call, text chat, email, fax, etc.) to an agent who is identified as a preferred agent for possible handling of the transaction. If the identified agent is not available, the transaction may still be assigned if the identified agent is expected to become available within an acceptable time period for that type of transaction. Agent unavailability may be due to any of a variety of reasons. For example, the agent may be occupied handling another transaction, engaged in post-transaction wrap-up activity, on a break, not logged in, in a meeting, in training, performing other tasks and not working transaction contacts, and so on.
In preferred embodiments of the invention, a group of agents having particular transaction skills is assigned to handle one or more queues, on either a primary or secondary basis, as is known in the art. In response to a transaction requiring handling by an agent, identification is made of an agent having sufficient transaction skill proficiency to handle the transaction commensurate with a desired skill proficiency level. A test is also made to determine whether the identified agent is either available, or unavailable but expected to become available within an acceptable time period to handle this type of transaction. If so, the transaction is assigned to the identified agent. If the identified agent is not likely to become available within the required time period, a next agent can be identified and tested for availability.
The testing step may include testing for an availability attribute associated with each agent. In addition, the identifying and testing steps will typically include evaluating one or more skill proficiency attributes for each agent, depending on the skills required by the transaction. In one exemplary embodiment, the skill proficiency and availability attributes for each agent are arranged in a stored agent matrix. The skill proficiency and availability attributes for each agent are compared and selection is made of the agent having the most favorable skill proficiency and availability attributes, or a most favorable composite attribute score. Using weighting, the availability attributes can be emphasized or de-emphasized relative to the skill proficiency attributes to reflect the relative importance of ensuring expeditious transaction processing versus agent skill proficiency matching. By way of example, the availability attributes could be weighted one way for real-time transactions (such as voice, video, chat or multimedia transactions) so that a relatively small amount of agent wait time is tolerated, and could be weighted another way for non-real-time transactions (such as email or fax transactions) and so that a relatively large amount of agent wait time is tolerated.
In another exemplary embodiment, the agents may be queued on the basis of “availability,” with the longest waiting available agent (i.e., the most idle agent) being at the head of the queue and the most unavailable agent (i.e., an unavailable agent who is predicted to be unavailable the longest time) being at the tail of the queue. The identifying and testing steps may then include searching through the queue to find agents with suitable skill proficiency attributes.
In both of the foregoing embodiments, the availability attribute assigned to each (unavailable) agent can be calculated using predictive methods, including methods that predict the availability of agents occupied in contact activity and those who are engaged in non-contact activity. The calculation of agent availability for occupied agents attempts to determine the time when an agent will complete a current transaction and whether that agent will then be able to handle a new transaction. The calculation result will depend upon the type of transaction being handled, the elapsed time of the transaction, the statistical handling time required for the transaction type, whether the agent is due for a break, agent load balancing considerations, and possibly other factors. The calculation of agent availability for agents engaged in non-contact activity attempts to determine the time when the agent will be ready to handle a new transaction. The calculation result will depend upon the expected return time of the agent, which can be determined using automated workforce management methods of the type used for establishing agent staff schedules and determining agent staff requirements. Consideration may also be given to agent adherence, which is a measure of an agent's historical (and/or real-time) adherence to assigned schedules. Agent adherence can be used to weight availability attributes or employed as a separate attribute.
The foregoing predictive determinations can be performed using background processing that periodically updates an agent attribute matrix or an agent availability queue. A separate processor may also be used for such calculations. Alternatively, event driven processing could be used to perform availability updates whenever an agent transitions between being available and unavailable, and visa versa.
The invention can be implemented within a telephone switching apparatus or on separate equipment, such as a data network server associated with a telephone switching apparatus. The telephone switching apparatus can be either customer premises equipment (e.g., a Private Branch Exchange) or a switch located at a telephone service provider Central Office.


REFERENCES:
patent: 4829563 (1989-05-01), Crockett et al.
patent: 5214688 (1993-05-01), Szlam et al.
patent: 5506898 (1996-04-01), Costantini et al.
patent: 5642411 (1997-06-01), Theis
patent: 6130942 (2000-10-01), Stenlund
patent: 6173053 (2001-01-01), Bogart et al.
patent: 6333980 (2001-12-01), Hollatz et al.
patent: 6424709 (2002-07-01), Doyle et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Automated transaction distribution system and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Automated transaction distribution system and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Automated transaction distribution system and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3132942

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.