Auto-joinable triple layer papermaker's forming fabric

Paper making and fiber liberation – Apparatus – Running or indefinite length product forming and/or treating...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S903000, C139S3830AA, C139S42500R, C442S203000, C442S205000

Reexamination Certificate

active

06379506

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to papermaking, and relates more specifically to forming fabrics employed in papermaking.
BACKGROUND OF THE INVENTION
In the conventional fourdrinier papermaking process, a water slurry, or suspension, of cellulosic fibers (known as the paper “stock”) is fed onto the top of the upper run of an endless belt of woven wire and/or synthetic material that travels between two or more rolls. The belt, often referred to as a “forming fabric,” provides a papermaking surface on the upper surface of its upper run which operates as a filter to separate the cellulosic fibers of the paper stock from the aqueous medium, thereby forming a wet paper web. The aqueous medium drains through mesh openings of the forming fabric, known as drainage holes, by gravity or vacuum located on the lower surface of the upper run (i.e., the “machine side”) of the fabric.
After leaving the forming section, the paper web is transferred to a press section of the paper machine, where it is passed through the nips of one or more pairs of pressure rollers covered with another fabric, typically referred to as a “press felt.” Pressure from the rollers removes additional moisture from the web; the moisture removal is often enhanced by the presence of a “batt” layer of the press felt. The paper is then transferred to a dryer section for further moisture removal. After drying, the paper is ready for secondary processing and packaging.
Typically, papermaker's fabrics are manufactured as endless belts by one of two basic weaving techniques. In the first of these techniques, fabrics are flat woven by a flat weaving process, with their ends being joined to form an endless belt by any one of a number of well-known joining methods, such as dismantling and reweaving the ends together (commonly known as splicing), or sewing on a pin-seamable flap or a special foldback on each end, then reweaving these into pin-seamable loops. A number of auto-joiner machines are now commercially available, which for certain fabrics may be used to automate at least part of the joining process. In a flat woven papermaker's fabric, the warp yarns extend in the machine direction and the filling yarns extend in the cross machine direction.
In the second basic weaving technique, fabrics are woven directly in the form of a continuous belt with an endless weaving process. In the endless weaving process, the warp yarns extend in the cross machine direction and the filling yarns extend in the machine direction. As used herein, the terms “machine direction” (MD) and “cross machine direction” (CMD) refer, respectively, to a direction aligned with the direction of travel of the papermakers' fabric on the papermaking machine, and a direction parallel to the fabric surface and traverse to the direction of travel. Both weaving methods described hereinabove are well known in the art, and the term “endless belt” as used herein refers to belts made by either method.
Effective sheet and fiber support marking are important considerations in papermaking, especially for the forming section of the papermaking machine, where the wet web is initially formed. Additionally, the forming fabrics should exhibit good stability when they are run at high speeds on the papermaking machines, and preferably are highly permeable to reduce the amount of water retained in the web when it is transferred to the press section of the paper machine. In both tissue and fine paper applications (i.e., paper for use in quality printing, carbonizing, cigarettes, electrical condensers, and like) the papermaking surface comprises a very finely woven or fine wire mesh structure.
Typically, finely woven fabrics such as those used in fine paper and tissue applications include at least some relatively small diameter machine direction or cross machine direction yarns. Regrettably, however, such yarns tend to be delicate, leading to a short surface life for the fabric. Moreover, the use of smaller yarns can also adversely affect the mechanical stability of the fabric (especially in terms of skew resistance, narrowing propensity and stiffness), which may negatively impact both the service life and the performance of the fabric.
To combat these problems associated with fine weave fabrics, multi-layer forming fabrics have been developed with fine-mesh yarns on the paper forming surface to facilitate paper formation and coarser-mesh yarns on the machine contact side to provide strength and durability. For exanple, fabrics have been constructed which employ one set of machine direction yarns which interweave with two sets of cross machine direction yarns to form a fabric having a fine paper forming surface and a more durable machine side surface. These fabrics form part of a class of fabrics which are generally referred to as “double layer” fabrics. Similarly, fabrics have been constructed which include two sets of machine direction yarns and two sets of cross machine direction yarns that form a fine mesh paperside fabric layer and a separate, coarser machine side fabric layer. In these fabrics, which are part of a class of fabrics generally referred to as “triple layer” fabrics, the two fabric layers are typically bound together by separate stitching yarns. However, they may also be bound together using yarns from one or more of the sets of bottom and top cross machine direction and machine direction yarns. As double and triple layer fabrics include additional sets of yarn as compared to single layer fabrics, these fabrics typically have a higher “caliper” (i.e., they are thicker) than comparable single layer fabrics. An illustrative double layer fabric is shown in U.S. Pat. No. 4,423,755 to Thompson, and illustrative triple layer fabrics are shown in U.S. Pat. No. 4,501,303 to Osterberg, U.S. Pat. No. 5,152,326 to Vohringer, and U.S. Pat. No. 5,437,315 to Ward.
Although these fabrics have generally performed successfully, they have some shortcomings. For instance, various multi-layer fabrics are not auto-joinable with currently available equipment. As noted above, auto-joining refers to an automated process whereby the two ends of a fabric woven in a flat-weaving process are joined to form a fabric woven in a continuous loop. However, auto-joining machines may not be used to join the two ends of a fabric if adjacent machine direction yarns follow the same weave path because the auto-joining machine may not be able to consistently separate such yarns correctly. If the adjacent yarns are paired, then the auto-joining machine may be unable to consistently select the correct yarn during the auto-join process, and instead may select both the correct yarn and the adjacent yarn. Thus, fabrics with paired machine directions yarns in a fabric layer are typically joined by a hand-weaving process, which is more expensive and time consuming than the auto-joining process.
SUMMARY OF THE INVENTION
The present invention relates to auto-joinable triple layer papermaker's forming fabrics which exhibit relatively low caliper values, good mechanical stability, and relatively high permeability.
In one embodiment of the present invention, triple layer papermaker's forming fabrics having both top and bottom sets of machine direction and cross machine direction yarns are provided in which each yarn in the set of bottom machine directions yarns alternatively pairs with the two yarns in the set of bottom machine direction yarns that are woven immediately adjacent to it. Such fabrics can be constructed so that at least some of the top machine direction yarns interweave with the bottom cross machine direction yarns to bind the top and bottom fabric layers together, or alternatively, may be constructed using a separate set of stitching yarns. If such separate stitching yarns are used, these yarns may be necessary to the formation of the top fabric layer or may be yarns that are separate from, but which weave with, the top fabric layer.
“In another embodiment of the present invention, the above-described triple layer forming fabrics may be woven

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Auto-joinable triple layer papermaker's forming fabric does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Auto-joinable triple layer papermaker's forming fabric, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Auto-joinable triple layer papermaker's forming fabric will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2837251

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.