Atomic layer removal process with higher etch amount

Semiconductor device manufacturing: process – Chemical etching – Vapor phase etching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S345260

Reexamination Certificate

active

08058179

ABSTRACT:
Higher overall etch rate and throughput for atomic layer removal (ALR) is achieved. The reaction is a self-limiting process, thus limiting the total amount of material that may be etched per cycle. By pumping down the process station between reacting operations, the reaction is partially “reset.” A higher overall etch rate is achieved by a multiple exposure with pump down ALR process.

REFERENCES:
patent: 4414069 (1983-11-01), Cuomo
patent: 4695327 (1987-09-01), Grebinski
patent: 4756794 (1988-07-01), Yoder
patent: 5030319 (1991-07-01), Nishino et al.
patent: 5268069 (1993-12-01), Chapple-Sokol et al.
patent: 5282925 (1994-02-01), Jeng et al.
patent: 5474641 (1995-12-01), Otsuki et al.
patent: 5505816 (1996-04-01), Barnes et al.
patent: 5636320 (1997-06-01), Yu et al.
patent: 5766971 (1998-06-01), Ahlgren et al.
patent: 5792275 (1998-08-01), Natzle et al.
patent: 5838055 (1998-11-01), Kleinhenz et al.
patent: 5876879 (1999-03-01), Kleinhenz et al.
patent: 5968279 (1999-10-01), Macleish et al.
patent: 5976973 (1999-11-01), Ohira et al.
patent: 5994240 (1999-11-01), Thakur
patent: 6071815 (2000-06-01), Kleinhenz et al.
patent: 6074951 (2000-06-01), Kleinhenz et al.
patent: 6335261 (2002-01-01), Natzle et al.
patent: 6573181 (2003-06-01), Srinivas et al.
patent: 6652713 (2003-11-01), Brown et al.
patent: 6706334 (2004-03-01), Kobayashi et al.
patent: 6726805 (2004-04-01), Brown et al.
patent: 6774000 (2004-08-01), Natzle et al.
patent: 6776874 (2004-08-01), Kobayashi et al.
patent: 6790733 (2004-09-01), Natzle et al.
patent: 6803309 (2004-10-01), Chou et al.
patent: 6817776 (2004-11-01), Colgan et al.
patent: 6837968 (2005-01-01), Brown et al.
patent: 6852584 (2005-02-01), Chen et al.
patent: 6858532 (2005-02-01), Natzle et al.
patent: 6905965 (2005-06-01), Subrahmanyan et al.
patent: 6926843 (2005-08-01), Cantell et al.
patent: 6951821 (2005-10-01), Hamelin et al.
patent: 6967167 (2005-11-01), Geiss et al.
patent: 6992011 (2006-01-01), Nemoto et al.
patent: 7029536 (2006-04-01), Hamelin et al.
patent: 7079760 (2006-07-01), Hamelin et al.
patent: 7416989 (2008-08-01), Liu et al.
patent: 2001/0016226 (2001-08-01), Natzle et al.
patent: 2002/0106908 (2002-08-01), Cohen et al.
patent: 2003/0029568 (2003-02-01), Brown et al.
patent: 2003/0134038 (2003-07-01), Paranjpe
patent: 2004/0018740 (2004-01-01), Brown et al.
patent: 2004/0083977 (2004-05-01), Brown et al.
patent: 2004/0110354 (2004-06-01), Natzle et al.
patent: 2004/0182324 (2004-09-01), Wallace et al.
patent: 2004/0184792 (2004-09-01), Hamelin et al.
patent: 2004/0185670 (2004-09-01), Hamelin et al.
patent: 2004/0200244 (2004-10-01), Hung et al.
patent: 2005/0056370 (2005-03-01), Brown et al.
patent: 2005/0101130 (2005-05-01), Lopatin et al.
patent: 2005/0106877 (2005-05-01), Elers et al.
patent: 2005/0205110 (2005-09-01), Kao et al.
patent: 2005/0218113 (2005-10-01), Yue
patent: 2005/0218507 (2005-10-01), Kao et al.
patent: 2005/0221552 (2005-10-01), Kao et al.
patent: 2005/0230350 (2005-10-01), Kao et al.
patent: 2005/0266684 (2005-12-01), Lee et al.
patent: 2005/0270895 (2005-12-01), Strang
patent: 2006/0051966 (2006-03-01), Or et al.
patent: 04/001809 (2003-12-01), None
U.S. Appl. No. 60/905,782, filed Mar. 7, 2007, Liu et al.
U.S. Appl. No. 60/925,255, filed Apr. 18, 2007, Schravendijk et al.
U.S. Appl. No. 60/962,638, filed Jul. 30, 2007, Liu et al.
U.S. Appl. No. 12/002,085, filed Dec. 13, 2007, Liu et al.
U.S. Appl. No. 12/002,171, filed Dec. 14, 2007, Schravendijk et al.
U.S. Office Action mailed Dec. 5, 2007 from U.S. Appl. No. 11/479,812.
U.S. Office Action mailed Jul. 17, 2007 from U.S. Appl. No. 11/479,812.
U.S. Office Action mailed May 2, 2007 from U.S. Appl. No. 11/479,812.
T. Meguro et al., “Digital etching of GaAs: New approach of dry etching to atomic ordered processing”, Apr. 16, 1990, American Institute of Physics pp. 1552-1554.
S.D. Park et al. “Atomic Layer Etching of Si(100) and Si(111) Using C12 and Ar Neutral Beam”, Electrochemical and Solid-State Letters, 8 (8) C106-C109 (2005).
H. Ogawa et al., “Dry Cleaning Technology for Removal of Silicon Native Oxide Employing Hot NH3/NF3 Exposure”, The Japan Society of Applied Physics, Part I, No. 8, Aug. 2002, pp. 5349-5358.
H. Nishino et al., “Damage-free selective etching of Si native oxides using NH3/NF3 and SF6/H2O down-flow etching”, J. Appl. Phys. vol. 74, No. 2, Jul. 15, 1993, pp. 1345-1348.
Y. Yang et al., “Ultrahigh-selectivity silicon nitride etch process using an inductively coupled plasma source”, J. Vac. Sci. Technol. A, vol. 16, No. 3, May/Jun. 1998, pp. 1582-1587.
Phan et al., Integrated Clean Process Using NF3/NH3 Remote Plasma for Nickle Silicide Formation, SEMICON Korea STS 2006, pp. 159-163.
S. Athavale et al., Molecular dynamics simulation of atomic layer etching of silicon, J. Vac. Sci. Technol. A, vol. 13, No. 3, May/Jun. 1995, pp. 966-971.
W. Natzle et al., “Trimming of hard-masks by Gaseous Chemical Oxide Removal (COR) for Sub-10nm Gates/Fins, for Gate Length Control and for Embedded Logic”, 2004 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 61-65.
Honda et al., “Chemical Dry Cleaning Technology for Reliable 65nm CMOS contact to NiSix”, IITC-2005 paper9.4.
Okamura et al., “Low Damage Via Formation with Low Resistance by NH3 Thermal Reduction for Cu / Ultra Low-k Interconnects”, 2004 IEEE, pp. 42-44.
Kim, et al., “New Contact Cleaning in HF & N2/H2 Microwave Plasma”, Solid State Phenomena vol. 92, (2003), pp. 239-242.
Byun et al., The Effects of Reactive Precleaning (RPC+) on the Formation of Titanium Silicide by PECVD TiCl4-Ti Deposition, and Its Thermal Stability, 2001, IEEE, pp. 222-224.
Taguwa, et al., “ICP-Ar/H2Precleaning and Plasma Damage-Free Ti-PECVD for Sub-Quarter Micron Contact of Logic with Embedded DRAM”, Conference Proceedings USLI XV 2000, pp. 589-593.
Chang, et al., “Interface Characteristics of Selective Tungsten on Silicon Using a New Pretreatment Technology for ULSI Application”, 1997 IEEE, pp. 738-743.
Park et al., “Low Damage In Situ Contact Cleaning Method by a Highly Dense and Directional ECR Plasma,” Jpn J. Appl. Phys. vol. 35 (1996), pp. 1097-1101.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Atomic layer removal process with higher etch amount does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Atomic layer removal process with higher etch amount, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Atomic layer removal process with higher etch amount will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4270034

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.