Electronic digital logic circuitry – Multifunctional or programmable – Array
Reexamination Certificate
2000-01-12
2002-10-08
Tokar, Michael (Department: 2819)
Electronic digital logic circuitry
Multifunctional or programmable
Array
C326S039000
Reexamination Certificate
active
06462578
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to the field of programmable logic circuits. More particularly, the present invention relates to an architecture and interconnect scheme for programmable logic circuits.
BACKGROUND OF THE INVENTION
When integrated circuits (ICs) were first introduced, they were extremely expensive and were limited in their functionality. Rapid strides in semiconductor technology have vastly reduced the cost while simultaneously increased the performance of IC chips. However, the design, layout, and fabrication process for a dedicated, custom built IC remains quite costly. This is especially true for those instances where only a small quantity of a custom designed IC is to be manufactured. Moreover, the turn-around time (i.e., the time from initial design to a finished product) can frequently be quite lengthy, especially for complex circuit designs. For electronic and computer products, it is critical to be the first to market. Furthermore, for custom ICs, it is rather difficult to effect changes to the initial design. It takes time, effort, and money to make any necessary changes.
In view of the shortcomings associated with custom IC's, field programmable gate arrays (FPGAs) offer an attractive solution in many instances. Basically, FPGAs are standard, high-density, off-the-shelf ICs which can be programmed by the user to a desired configuration. Circuit designers first define the desired logic functions, and the FPGA is programmed to process the input signals accordingly. Thereby, FPGA implementations can be designed, verified, and revised in a quick and efficient manner. Depending on the logic density requirements and production volumes, FPGAs are superior alternatives in terms of cost and time-to-market.
A typical FPGA essentially consists of an outer ring of I/O blocks surrounding an interior matrix of configurable logic blocks. The I/O blocks residing on the periphery of an FPGA are user programmable, such that each block can be programmed independently to be an input or an output and can also be tristatable. Each logic block typically contains programmable combinatorial logic and storage registers. The combinatorial logic is used to perform boolean functions on its input variables. Often, the registers are loaded directly from a logic block input, or they can be loaded from the combinatorial logic.
Interconnect resources occupy the channels between the rows and columns of the matrix of logic blocks and also between the logic blocks and the I/O blocks. These interconnect resources provide the flexibility to control the interconnection between two designated points on the chip. Usually, a metal network of lines run horizontally and vertically in the rows and columns between the logic blocks. Programmable switches connect the inputs and outputs of the logic blocks and I/O blocks to these metal lines. Crosspoint switches and interchanges at the intersections of rows and columns are used to switch signals from one line to another. Often, long lines are used to run the entire length and/or breadth of the chip.
The functions of the I/O blocks, logic blocks, and their respective interconnections are all programmable. Typically, these functions are controlled by a configuration program stored in an on-chip memory. The configuration program is loaded automatically from an external memory upon power-up, on command, or programmed by a microprocessor as part of system initialization.
The concept of FPGA was summarized in the sixty's by Minnick who described the concept of cell and cellular array as reconfigurable devices in the following documents: Minnick, R. C. and Short, R. A., “Cellular Linear-Input Logic, Final Report,” SRI Project 4122, Contract AF 19(628)-498, Stanford Research Institute, Menlo Park, Calif., AFCRL 64-6, DDC No. AD 433802 (February 1964); Minnick, R. C., “Cobweb Cellular Arrays,” Proceedings AFIPS 1965 Fall Joint Computer Conference, Vol. 27, Part 1 pp. 327-341 (1965); Minnick, R. C. et al., “Cellular Logic, Final Report,” SRI Project 5087, Contract AF 19(628)-4233, Stanford Research Institute, Menlo Park, Calif., AFCRL 66-613, (April 1966); and Minnick, R. C., “A Survey of Microcellular Research,” Journal of the Association for Computing Machinery, Vol. 14, No. 2, pp. 203-241 (April 1967). In addition to memory based (e.g., RAM-based, fuse-based, or antifuse-based) means of enabling interconnects between devices, Minnick also discussed both direct connections between neighboring cells and use of busing as another routing technique. The article by Spandorfer, L. M., “Synthesis of Logic Function on an Array of Integrated Circuits,” Stanford Research Institute, Menlo Park, Calif., Contract AF 19(628)2907, AFCRL 64-6, DDC No. AD 433802 (November 1965), discussed the use of complementary MOS bi-directional passgate as a means of switching between two interconnect lines that can be programmed through memory means and adjacent neighboring cell interconnections. In Wahlstrom, S. E., “Programmable Logic Arrays-Cheaper by the Millions,” Electronics, Vol. 40, No. 25, 11, pp. 90-95 (December 1967), a RAM-based, reconfigurable logic array of a two-dimensional array of identical cells with both direct connections between adjacent cells and a network of data buses is described.
Shoup, R. G., “Programmable Cellular Logic Arrays,” Ph.D. dissertation, Carnegie-Mellon University, Pittsburgh, Pa. (March 1970), discussed programmable cellular logic arrays and reiterates many of the same concepts and terminology of Minnick and recapitulates the array of Wahlstrom. In Shoup's thesis, the concept of neighbor connections extends from the simple 2-input 1-output nearest-neighbor connections to the 8-neighbor 2-way connections. Shoup further described use of bus as part of the interconnection structure to improve the power and flexibility of an array. Buses can be used to route signals over distances too long, or in inconvenient directions, for ordinary neighbor connections. This is particularly useful in passing inputs and outputs from outside the array to interior cells.
U.S. Pat. No. 4,020,469 discussed a programmable logic array that can program, test, and repair itself. U.S. Pat. No. 4,870,302 introduced a coarse grain architecture without use of neighbor direct interconnections where all the programmed connections are through the use of three different sets of buses in a channeled architecture. The coarse grain cell (called a Configurable Logical block or CLB) contains both RAM-based logic table look up combinational logic and flip flops inside the CLB where a user defined logic must be mapped into the functions available inside the CIB. U.S. Pat. No. 4,935,734 introduced a simple logic function cell defined as a NAND, NOR or similar types of simple logic function inside each cell. The interconnection scheme is through direct neighbor and directional bus connections. U.S. Pat. Nos. 4,700,187 and 4,918,440 defined a more complex logic function cell where an Exclusive OR and AND functions and a register bit is available and selectable within the cell. The preferred connection scheme is through direct neighbor connections. Use of bi-direction buses as connections were also included.
Current FPGA technology has a few shortcomings. These problems are embodied by the low level of circuit utilization given the vast number of transistors available on chip provided by the manufacturers. Circuit utilization is influenced by three factors. The first one at the transistor or fine grain cell level is the function and flexibility of the basic logic element that can be readily used by the users. The second one is the ease in which to form meaningful macro logic functions using the first logic elements with minimum waste of circuit area. The last factor is the interconnections of those macro logic functions to implement chip level design efficiently. The fine grained cell architectures such as those described above, provided easily usable and flexible logical functions for designers at the base logic element level.
However, for dense and comple
Blakely , Sokoloff, Taylor & Zafman LLP
BTR, Inc.
Tan Vibol
Tokar Michael
LandOfFree
Architecture and interconnect scheme for programmable logic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Architecture and interconnect scheme for programmable logic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Architecture and interconnect scheme for programmable logic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2935454