Arc coating on mask quartz plate to avoid alignment error on...

Semiconductor device manufacturing: process – With measuring or testing – Optical characteristic sensed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S016000, C438S029000, C438S048000, C438S069000, C438S072000, C257S021000, C257S184000, C257S431000, C356S152200, C356S445000, C359S197100, C359S537000, C359S538000

Reexamination Certificate

active

06344365

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The invention relates to the fabrication of integrated circuit devices, and more particularly, to a method and apparatus that allows for the elimination of alignment errors of the photolithographic mask that is used by wafer stepper or scanner tools.
(2) Description of the Prior Art
The traditional use of masks in the process of creating semiconductor devices relates to the creation of highly repetitive patterns in semiconductor surfaces. These surfaces are most notably the surfaces of layers of photoresist wherein a pattern is created based on a pattern that is present in a photolithographic mask. The pattern in the layer of photoresist is used to create a pattern in an underlying layer of for instance insulation material, dielectric, metal, and the like. Masks are however not only used for the purpose of etching layers of semiconductor material but can, in addition, be used to manipulate light for purposes of wafer alignment during the process of creating semiconductor devices. One such application is the use of a mask in wafer stepper and scanner tools. One of the important sub-functions of a wafer stepper tool is to align the wafer before a next layer of material is exposed on the wafer. This alignment function is based on placing a wafer marker in an exact location and adjusting the position of the wafer to the point where the wafer is in the exact and desired location. To accomplish this, a laser beam is aimed at a marker that is provided for this purpose on the surface of the wafer. This marker is a reference point that is used to adjust the exact location of the wafer. Incident light is reflected from the surface of the alignment marker, resulting in a diffracted light beam. The diffracted light passes through an opening (lens) that is formed in a layer of chrome, the layer of chrome is the incident surface of a quartz mask. The light passes through the quartz mask and is observed and measured as an indication of the alignment of the wafer.
A problem that can arise with this approach is caused by light that does not strike a surface under an exact angle of 90 degrees, where the surface is a surface of an object that has a thickness that is comparable with the wavelength of the incident light. The diffracted light passes through two physical entities before it is analyzed. The first entity is a layer of chrome that has been deposited on the surface of the second entity and in which an opening (lens) has been created for the diffracted light to pass through. Because the chrome has been laterally removed over a measurable distance and along a first surface of the second entity, the diffracted light does not pass through any surfaces of the layer of chrome. The diffracted light enters the second entity, a quartz mask with a certain thickness, through a first surface and exits the second entity through a second surface whereby both surfaces are parallel to each other. The thickness of quartz mask is large enough (compared with the wavelength of the incident light) that light will be reflected from the second surface of the quartz mask if the diffracted light does not strike this surface under an angle of 90 degrees. Diffracted light that is reflected by the second surface of the quartz mask will be directed back at the first surface from which the light will again be reflected back to the second surface causing a diffusion of light to occur throughout the body of the quartz mask. The reflection of the diffracted light that occurs by the second surface of the quartz mask will be a partial reflection, with some of the light that strikes the second surface of the quartz mask penetrating this mask and emerging from the second surface of the quartz mask as a so-called reflection beam of light. The same can be observed regarding the original or incident beam of light that strikes the second surface of the quartz mask, a portion of the incident light beam will penetrate through the second surface of the quartz mask and emerge from that surface as an incident beam of light. The incident light beam that passes through the second surface of the quartz mask has traveled a distance that is shorter than the distance that is traveled by the light beams that are reflected by the second surface of the quartz mask. The intensity of the incident light beam will therefore be highest, the adjacent light that emerges from the second surface of the quartz mask and that is created by reflections of light between the first and the second surfaces of the quartz mask progressively decreases in intensity, a decrease that is proportional to the distance between the incident light (that passed through the second surface of the quartz mask without being reflected internally to the quartz mask) and the reflected light (that passed through the second surface of the quartz mask after having been reflected internally between the two surfaces of the quartz mask). It is therefore clear that the light that is reflected by the wafer mark for wafer alignment is, after it has passed through the chrome lens/quartz mask arrangement, is highly diffused making exact alignment of the wafer difficult to accomplish.
It must be observed that the above indicated problems of reflected light (between the first and the second surfaces of the quartz mask) are only present if the diffracted light (that impacts the first surface of the quartz mask as incident refracted light) impacts this surface under an angle that is other than 90 degrees. It is, for practical tool arrangements such as wafer steppers and scanners, very difficult to the point of being impossible to assure that the angle of incidence is exactly 90 degrees. For actual tool applications the phenomenon of light diffusion will therefore be an ever present distracter resulting in errors in wafer alignment that can be as large as 100 nm. This error in wafer alignment is not acceptable in a semiconductor manufacturing environment, a method must therefore be sought that eliminates the above highlighted reasons and source of the wafer misalignment. The invention provides such a method.
FIG. 1
shows a cross section of the quartz mask of Prior Art whereby the highlighted items are the following, all of these items having been previously described:
10
is the body of the quartz mask
12
is the layer of chrome that has been deposited on the first surface
26
of the quartz mask
10
14
is the opening or lens that has been created in the layer
12
of chrome for passage of the diffracted light
16
is the light that is diffracted by the wafer mark that is provided on the surface of the wafer and that is used for wafer alignment in the wafer stepper or wafer scanner tool
17
is the diffracted light after the light enters into the quartz mask
10
18
is the portion of the diffracted light
17
that is reflected by the second surface
28
of the quartz mask
10
20
is the portion of the reflected light
18
light that is reflected by the first surface
26
of the quartz mask
10
22
is the portion of the incident light
17
passes through the second surface of the quartz mask
10
and that emerges from the quartz mask
10
, and
24
is the portion of the reflected light
20
that passes through the second surface of the quartz mask
10
and that emerges from the quartz mask
10
.
It must be observed, as previously stated, that the light intensity of light beam
24
is less than the light intensity of light beam
22
causing diffusion of the light that is reflected by the wafer mark and that is available for measuring wafer alignment.
U.S. Pat. No. 4,873,163 (Watakabe et al.) teaches a photomask with an ARC (low reflective layer) on top.
U.S. Pat. No. 5,279,911 (Kamon et al.) shows a photomask with a ARC 13 on the backside.
U.S. Pat. No. 5,194,345 (Rolfson) shows a phase shift mask (PSM).
U.S. Pat. No. 5,553,110 (Sentok et al.) discloses an x-ray mask with an ARC (e.g. light scattering prevention film) layer.
U.S. Pat. No. 4,764,441 (Ohta et al.) teaches a photomask with a multilayer non-transmissive film.
U.S. Pat. No. 4,53

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Arc coating on mask quartz plate to avoid alignment error on... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Arc coating on mask quartz plate to avoid alignment error on..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Arc coating on mask quartz plate to avoid alignment error on... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2940854

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.