Apparatus for separating particles from a cyclonic fluid flow

Liquid purification or separation – Diverse distinct separators – Including a filter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S512100, C209S715000, C209S012100, C015S351000, C015S353000, C055S307000, C055S337000, C055S345000, C055S446000, C055S459100

Reexamination Certificate

active

06228260

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to cyclonic separators. In one particular application, the invention relates to the cyclonic separation of particulate material from an air flow.
BACKGROUND OF THE INVENTION
The use of a cyclone, or multiple cyclones connected in parallel or series, has long been known to be advantageous in the separation of particulate matter from a fluid stream. Typically, a relatively high speed fluid stream is introduced tangentially to a generally cylindrical or frusto-conical container, wherein the dirty air stream is accelerated around the inner periphery of the container. The centrifugal acceleration caused by the travel of the fluid in a cyclonic stream through the cyclone causes the particulate matter to be disentrained from the fluid flow and, eg., to collect at the bottom of the container. A fluid outlet is provided for the extraction of the fluid from the centre of the top of the cyclone container, as is well known in the art.
A typical flow path in a cyclone separator is as follows. Fluid to be treated is introduced tangentially at a fluid inlet located at an upper end of the cyclone container. The fluid stream rotates around the inner surface of the cyclone container, and spirals generally downwardly around the inner surface of the container (if the cyclone container is vertically disposed). At a bottom end of the cyclone container the fluid stream travels radially inwardly, generally along the bottom of the container and then turns upwardly and proceeds vertically up and out of the cyclone container. The particulate matter separating action of the cyclonic flow occurs substantially around the inner surface of the container. Once the fluid moves inwardly to the centre of the container, and upwardly there through, there is little or no dirt separation achieved.
The difficulty experienced with prior art cyclonic separators is the reentrainment of the deposited particles back into the outgoing fluid flow. Deposited particles exposed to a high speed cyclonic flow thereover have a tendency to be reentrained. This is particularly problematic when the container has a solid bottom portion in which the dirt collects. However, there is a potential reentrainment problem even if the bottom of the container has a passageway provided in the bottom thereof to convey the separated particulate material away from the container.
If a high degree of separation is required, it is known to connect a plurality of cyclones in series. While using several cyclones in series can provide the required separation efficiency, it has several problems. First, if the separators are to be used in industry, they generally need to accommodate a high flow rate (eg. if they are to be used to treat flue gas). The use of a plurality of cyclones increases the capital cost and the time required to manufacture and install the separators. Further, the use of a plurality of cyclones increases the space requirements to house the cyclones. Accordingly, there is a need for an improved anti-reentrainment means for cyclonic separators.
SUMMARY OF THE INVENTION
In has now been discovered that a single cyclone having improved efficiency (eg. up to 99% efficiency) may be manufactured by positioning in the cyclone chamber a member for creating a dead air space beneath the cyclonic flow region of the cyclone chamber wherein the dead air space is in communication with the cyclonic flow region by a plurality of openings in the member. Baffles or the like are provided in the dead air space to prevent cyclonic flow therein. This construction effectively traps separated material beneath the cyclonic flow region and inhibits the reentrainment of the separated material. Thus, a single cyclone may be used in place of a plurality of cyclones to achieve the same separation efficiency.
In accordance with the instant invention, there is provided a cyclone separator for separating entrained particles from a fluid flow, the separator comprising a cyclone chamber having a centre and a cyclonic flow region, a fluid inlet for introducing a cyclonic fluid flow to the cyclonic flow region, a fluid outlet for removing the fluid flow from the cyclone chamber, a particle separating member positioned in the cyclone chamber beneath the cyclonic flow region, the particle separating member having a plurality of apertures, a particle receiving chamber disposed beneath the particle separating member for receiving particles separated from the fluid flow, the particles passing into the particle receiving chamber through the apertures, and a plurality of baffle members positioned in the particle separating member.
In one embodiment, the baffle members depend downwardly from the particle separating member. The particle receiving chamber may have a bottom surface and the baffle members are spaced from said bottom surface to define an open area between the baffle members and the bottom surface. Preferably, the open area is a minor portion (eg. 25%) of the distance between the particle separating member and the bottom surface.
In another embodiment, a baffle member is disposed adjacent each aperture and, preferably, the baffle members are disposed downstream of said apertures.
In another embodiment, the apertures have a longitudinal length and the baffle members comprise a main body and a second portion, the main body portion has at least the same longitudinal length as said apertures and extends in a direction transverse to the air flow and the second portion extends at an angle to the main body portion at a position that does not underlie the aperture. The second portion is preferably disposed substantially perpendicularly to the main body portion and preferably extends upstream from the main body portion.
In another embodiment, the cyclonic flow region has an outer peripheral portion, a medial portion disposed interior of the peripheral portion and an inner portion disposed interior of the medial portion, the cyclone chamber has an outer wall, the apertures are provided in the portion of the particle separating member that underlies the peripheral portion and the baffle members extend from the outer wall at least to the medial portion of the cyclonic flow region.
The separator may be used in an upright vacuum cleaner. Accordingly, the separator may further comprise a cleaner head adapted for movement over a floor and having a fluid nozzle positionable adjacent the floor, the nozzle in fluid flow communication via a passageway with the separator fluid inlet, a handle for moving the cleaner head over the floor, and a casing for housing the cyclone chamber. The casing is preferably pivotally mounted to the cleaner head. The separator may be used in a canister or a central vacuum cleaner. Accordingly, the passageway may further comprise a flexible portion that is positioned external of the cleaner head and the casing and the handle is affixed to the cleaner head.
In accordance with the instant invention, there is also provided a separator for separating entrained particles from a fluid flow, the separator comprising a cyclone chamber for containing a cyclonic flow in a cyclonic flow region, means for introducing a fluid flow to the cyclone flow region for cyclonic rotation therein, means for removing the fluid flow from the cyclone chamber, particle receiving means disposed beneath the cyclone flow region for receiving particles separated from the fluid flow, separation means for dividing the particle receiving means from the cyclone chamber, transporting means associated with the separation means for connecting the particle receiving means in flow communication with the cyclonic flow region such that, in operation, particles pass through the transporting means to the particle receiving means, and flow disruption means beneath the separating means for disrupting cyclonic fluid flow in the particle receiving means.
In one embodiment, the flow disruption means is configured to reduce the rate of cyclonic air flow in the particle receiving means.
In another embodiment, the flow disruption means is configured

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for separating particles from a cyclonic fluid flow does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for separating particles from a cyclonic fluid flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for separating particles from a cyclonic fluid flow will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.