System and method for determining freight container locations

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S357490

Reexamination Certificate

active

06266008

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a system and method for tracking inventory and freight using the global positioning satellite system.
2. Description of the Related Art
The present invention utilizes the global positioning satellite system (GPS) to determine the location of freight, inventory, packages or the like (“freight”) in a holding area, such as a freight terminal, railyard, airport, warehouse or other storage area. Knowledge of GPS and freight or inventory problems and procedures is useful for an appreciation of the present invention. U.S. Pat. No. 5,364,093 entitled “Golf Distance Measuring System and Method” (incorporated by reference) describes inter alia a system for tracking golf carts and players on a golf course using GPS and is analogous to the present invention which tracks freight.
THE GLOBAL POSITIONING SATELLITE SYSTEM
GPS is a spaced based system of satellites which can provide an infinite number of receivers accurate three dimensional position (i.e. horizontal location and altitude), velocity, and time. A general understanding of GPS is useful to appreciate the operation of the present invention. Numerous books and articles are available on GPS operation and theory. See e.g., GPS—A Guide to the Next Utility, Trimble Navigation (incorporated by reference for background).
The GPS system is an umbrella of satellites circling the earth passively transmitting signals. Each satellite has a very accurate atomic clock which is periodically updated. A GPS receiver with an accurate clock can identify a satellite and determine the transit time of the signal from the satellite to the receiver. Knowing the transit time and knowing that the speed of light is 186,000 miles per second enables a calculation of the distance from the satellite to the receiver. The signal carries with it data which discloses satellite position and time of transmission, and synchronizes the GPS receiver with the satellite clocks.
As a GPS receiver locates 3 or 4 satellites it determines its distance from each satellite. The intersection of these 3 or 4 spheres enables a precise location of the receiver (and some compensation for timing errors in the receiver
t
s internal clock). The GPS system should have 21 satellites and 3 spares once the system is fully deployed. The full constellation of 24 satellites was declared operational in 1994.
There are basically two types of GPS receivers—P (precision) code and C/ A (coarse availability) code. P code is for government use only and requires specialized equipment. C/A code receivers are becoming widely available with the continuing deployment of GPS satellites. One difficulty with C/A code receivers is that the government from time to time intentionally degrades the satellite signals—so called “selective availability.” With selective availability turned on horizontal accuracy is on the order of 50-100 meters. With selective availability disabled horizontal accuracy can improve to around 15 meters, often better than 5 meters.
There are several methods presently available for improving the horizontal accuracy of GPS. One method is called “differential” and generally involves sending a correction signal from a base station located at a known coordinate. For example, the U.S. Coast Guard has placed a number of GPS base stations at known locations around the U.S. coast region. These base stations compare their GPS computed positions with the known coordinates of their location to calculate a differential correction. This differential correction is then broadcast to any GPS receiver in range. This correction may be a position correction, but normally the correction is to the timing signal for each individual satellite so that GPS receivers looking at different satellites may calculate their own correction. This is a “wide area” approach. A “local area” approach is also often used for differential correction where a private gps base station is positioned at a known location and broadcasts a private or local correction.
Another correction approach which has not yet matured but is promising is a so-called “pseudolite” correction. With a pseudolite a GPS transmitter transmits a timing signal much like a GPS satellite. See, The Use of PseudoSatellites For Improving GPS Performance, D. Klein, B. Parkinson, Navigation (1984), reprinted Vol. III GPS Navigation p. 135 (1986); Optimal locations of Pseudolites for Differential GPS, B. Parkinson, K. Fitzgibbon, 30 Navigation J. No. 4, winter 1986-87 (incorporated by reference for background). The pseudolite transmits from a known location on or near the standard GPS carrier frequency (e.g. L
1
or L
2
) to appear to the GPS receiver like another gps satellite. The difference is the pseudolite does not have normal gps errors (or at least minimal), such as ephemeris, ionospheric, multipath, etc., and more importantly, the pseudolite does not have the intentional degradation, selective availability. Additionally, a differential correction signal can be added to the pseudolite signal if desired. A primary benefit of use of pseudolites is that unlike normal differential correction, pseudolites do not require a separate communications channel. That is, the pseudolites appear as another satellite channel to the receiver. Another benefit is that the timing data from the pseudolite channel is known to be much more precise.
FREIGHT TRACKING SYSTEMS
Consider a railyard, airport, or sea terminal. A number of railcars or freight containers are constantly on the move into and out of the terminal. The cargo is generally of high value and often transit time is time critical. Indeed, transit time can be very costly when considering a large number of freight containers delayed by even a day extra. The incidence of misdirected or misplaced freight or cargo can add significantly to the shipping costs. Keeping track of where a particular freight container is located is a daunting task considering the often dynamic nature of a freight terminal and repositioning of the cargo.
Tracking inventory in an industrial yard is a similar problem. In manufacturing, it is desirable to track the location and availability of finished goods. Most systems use some form of manual label tracking or bar codes to track the inventory. Unfortunately, manual tracking often requires a person to traverse the inventory and scan labels to identify the presence of the inventory.
SUMMARY OF THE INVENTION
The problems with finding freight in a freight yard are largely solved by the system and method of the present invention. The system tracks individual freight containers by intermittently transmitting the position of a freight container to a base station. The base station is able to post process the GPS data to achieve an accurate location of an individual package within one meter or better accuracy. The base station preferably has an inventory of the contents of a container. Therefore, when a particular container must be located for reshipment or delivery, the base station need only consult its database to find a particular container's location and contents. This is particularly important when the containers are moving about a freight yard as containers are relocated.
Broadly speaking, the system includes a number of remote GPS receivers attachable to freight containers in a freight yard. The remote receivers are configured to intermittently transmit their location data to a base station. A communication network connects the remote receivers to the base station. The base station is configured to receive and display the location of a particular remote receiver attached to a freight container upon request. “Intermittent” means noncontinuous operation in the context of present invention. Continuous operation is usually unnecessary and adds battery bulk to a remote receiver where minimal size and weight is important. In one form, a timer sets the time for a remote receiver to transmit. In another form, a motion detector initiates a remote receiver operation.
In one form, the remote receivers are simply transmitters f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for determining freight container locations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for determining freight container locations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for determining freight container locations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560356

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.