Single-crystal – oriented-crystal – and epitaxy growth processes; – Apparatus
Reexamination Certificate
2000-12-27
2002-09-10
Hiteshew, Felisa (Department: 1765)
Single-crystal, oriented-crystal, and epitaxy growth processes;
Apparatus
C117S900000, C118S719000, C118S725000, C118S730000, C414S217000
Reexamination Certificate
active
06447607
ABSTRACT:
PRIORITY INFORMATION
This application claims the priority benefit under 35 U.S.C. §119 to Finnish patent application No. 19992798, filed Dec. 28, 1999, the entire content of which is hereby expressly incorporated by reference.
FIELD OF THE INVENTION
The present invention relates to an apparatus according for growing thin films on a surface of a substrate. More particularly, the present invention relates to an apparatus for producing thin films on the surface of a substrate by subjecting the substrate to alternately repeated surface reactions of vapor-phase reactants.
DISCUSSION OF RELATED ART AND SUMMARY OF THE INVENTION
Conventionally, thin-films are grown using vacuum evaporation deposition, the Molecular Beam Epitaxy (MBE) and other similar vacuum deposition methods, different variants of the Chemical Vapor Deposition (CVD) method (including low-pressure and organometallic CVD and plasma-enhanced CVD) or a deposition method of alternately repeated surface reactions called the Atomic Layer Epitaxy (ALE) method or Atomic Layer Deposition (ALD).
In MBE and CVD methods, the thin film growth rate is determined by the concentrations of the provided starting material in addition to other process variable. To achieve a uniform thickness of the layers deposited by these methods, the concentrations and reactivities of starting materials must be carefully kept constant on different surface areas of the substrate. If the different starting materials are allowed to mix with each other prior to reaching the substrate surface, as is the case in the CVD method, for instance, a chance of their mutual reaction arises. Then, a risk of microparticle formation already within the infeed channels of the gaseous reactants is imminent. Such microparticles generally have a deteriorating effect on the quality of the deposited thin film. Therefore, the possibility of premature reactions in MBE and CVD reactors, for instance, is avoided by heating the starting materials not earlier than at the substrate surfaces. In addition to heating, the desired reaction can be initiated using, e.g., a plasma discharge or other similar activating means.
In the MBE and CVD processes, the growth of thin films is primarily adjusted by controlling the infeed rates of starting materials impinging on the substrate. In contrast, the growth rate in the ALE process is controlled by the substrate surface qualities, rather than the starting material concentrations or flow variables. The only prerequisite in the ALE process is that the starting material is available in sufficient concentration to saturate the surface of the substrate. The ALE method is described, e.g., in FI patent publications 52,359 and 57,975 and in U.S. Pat. Nos. 4,058,430 and 4,389,973. Furthermore, equipment constructions suited to implement this method are disclosed in patent publications U.S. Pat. No. 5,855,680 and FI 100,409. Apparatuses for growing thin films are also described in the following publications: Material Science Report 4(7) (1989), p. 261, and Tyhjiötekniikka (Finnish publication for vacuum techniques), ISBN 951-794-422-5, pp. 253-261. These references are incorporated herein by reference.
In the ALE growth method described in FI Pat. No. 57,975, the reactant atoms or molecules are arranged to sweep over the substrates, thus impinging on their surface until a fully saturated molecular layer is formed thereon. Next, the excess reactant and the gaseous reaction products are removed from the substrates with the help of inert gas pulses passed over the substrates or, alternatively, by pumping the reaction space to a vacuum before the next gaseous. pulse of a different reactant is admitted. The succession of the different gaseous reactant pulses and the diffusion barriers formed by the separating inert gas pulses or cycles of vacuum pumping result in a thin film growth controlled by the individual surface-chemical reactions of all these components. If necessary, the effect of the vacuum pumping cycle may be augmented by the inert gas flow. For the function of the process, it is typically irrelevant whether the gaseous reactants or the substrates are kept in motion; it only matters to keep the different reactants of the successive reactions separate from each other and to have them sweep successively over the substrate.
Most vacuum evaporators operate on the so-called “single-shot” principle. In such an arrangement, a vaporized atom or molecule can impinge on the substrate only once. If no reaction with the substrate surface occurs, the atom/molecule rebounds or is revaporized so as to hit the apparatus walls or the vacuum pump, undergoing condensation therein. In hot-walled reactors, an atom or molecule that collides with the process chamber wall or the substrate can undergo revaporization and, hence, repeated impingements on the substrate. When applied to ALE process chambers, this “multi-shot” principle can offer a number of benefits including improved efficiency of material consumption.
ALE reactions operating on the “multi-shot” principle generally are designed for the use of a cassette unit in which a plurality of substrates can be taken simultaneously into the process chamber. In a modified arrangement, the substrates can be placed unmountedly into the process space formed by a pressure vessel, whereby the process space also serves as the reaction chamber wherein the vapor-phase reactants are reacted with the substrate surface in order to grow thin film structures. If a cassette unit designed for holding several substrates is employed, the reaction chamber is formed in the interior of the cassette unit. Use of a cassette unit shortens the growth time per substrate in respect to single-substrate cycling, whereby a higher production throughput is attained. Furthermore, a cassette unit arranged to be movable into and out from the process chamber can be dismantled and cleaned without interrupting the production flow because one cassette unit can be used in the process chamber while another one is being cleaned.
Batch processing is preferred in conventional ALE thin film processes because of the relatively slow production pace of the ALE method relative to other thin film growth techniques. The overall growth time per substrate of a thin film structure can be reduced in a batch process to a more competitive level. For the same reason, larger substrate sizes are also preferred.
In the deposition of thin films, the goal is to keep the process chambers continually running under controlled process conditions as to the temperature, pressure and other process parameters so that particulate matter of the ambient air and other chemical impurities cannot reach the substrates. Additionally, this arrangement eliminates the heating/cooling cycles that impair the reliability of process chambers and are time-consuming. Generally, a separate loading chamber is employed that is continually kept under a vacuum and to which the reactors are connected. Substrate loading thereto and unloading therefrom is accomplished by taking both the process chamber and the loading chamber to a vacuum, after which a valve between both chambers is opened and a robotic arm adapted into the loading chamber removes the processed substrate and loads a new substrate into the process chamber. Subsequently, the valve is closed and the process may be started after the substrate and the process chamber have attained the proper process conditions. Next, the processed substrate is moved via another controllable valve from the loading chamber to an air lock pumped to a vacuum, after which the valve is closed. Subsequently, the air lock can be pressurized, whereby the substrate can be removed from the system via a third valve opening into the ambient space. The new substrate to be processed is taken in the same fashion via the loading chamber into the process chamber.
Currently, process apparatuses equipped with this type of a loading chamber are available for single substrates only and they are not suited for accommodating heavy substrate cassette units. Depending on the batch and substr
Kilpi Vaino
Soininen Pekka T.
ASM Microchemistry Oy
Hiteshew Felisa
Knobbe Martens Olson & Bear LLP
LandOfFree
Apparatus for growing thin films does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for growing thin films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for growing thin films will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2890760