Apparatus for forming optical aperture

Metal deforming – With cutting – By composite tool

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C072S412000, C029S600000

Reexamination Certificate

active

06684676

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus for forming an optical aperture. In particular, the present invention relates to an apparatus for forming an optical aperture utilized in a near field device that radiates and/or detects near field light.
2. Description of the Related Art
In order to observe microregions of the sample surface on the order of nanometers, scanning probe microscopes (SPM) such as scanning tunneling microscopes(STM) and atomic force microscopes (AFM) are used. SPM scans a sharpened probe on the sample surface, observes the interaction between the probe and the sample surface such as tunneling current or atomic force, and is able to obtain images with a resolution that depends on the probe tip shape. However, there are relatively severe restrictions on the sample.
Interest has been focused on scanning near field optical microscopes (SNOM) that observe the interaction between the near field generated on the sample surface and the probe, thus enabling the observation of microregions of the sample surface.
In SNOM, near field is irradiated to the sample surface from the aperture formed at the sharpened tip of an optical fiber. The aperture has a size smaller than the diffraction limit of the light introduced into the optical fiber, for example, about 100 nm in diameter. The separation between the aperture formed at the probe tip and the sample is controlled by SPM technology, and is smaller than the aperture size. The spot size of the near field on the sample is approximately the aperture size. Therefore, by scanning the near field that is irradiated on the sample surface, it is possible to observe the optical properties of microregions of the sample.
Not only for microscopes, but also for high density optical data recording is it applicable by introducing light of relatively high intensity through the optical fiber probe towards the sample. Near field with high energy density is generated at the optical fiber probe aperture, and it modifies either the structures or the properties locally of the sample surface. In order to obtain near field of high intensity, efforts have been made to increase the vertical angle.
In these devices utilizing near field, aperture forming is the most important. As one apparatus for forming an aperture, an apparatus disclosed in Japanese Patent Publication No.21201/1993 is known. In the manner of forming the aperture with this apparatus, a pointed light waveguide on which an opaque film is deposited is used as the object for forming the aperture. The method of forming the aperture is that the pointed light waveguide with an opaque film on the point is plastically deformed by pressing the pointed light waveguide against a hard flat plate with a very small amount of pressing, which is well-controlled by a piezoelectric actuator.
Another apparatus for forming an aperture is disclosed in Japanese Patent Laid-Open No. 265520/1999. In the aperture forming apparatus disclosed in Japanese Patent Laid-Open No. 265520/1999, the object which is to have an aperture is the point of a projection which is formed on a plate by FIB(Focused Ion Beam). The method of forming the aperture is that FIB is irradiated on the side of the opaque film on the projection point removing the opaque film on the point.
However, according to the method of Japanese Patent Publication No. 21201/1993, the aperture can be formed on the light waveguide only one by one. Additionally, a piezoelectric actuator having a moving resolution of a few nano meters is needed to control the amount of pressing and thus an aperture forming apparatus has to be placed in an environment which is little influenced by vibration of other devices or air. Furthermore, it takes much time to adjust a waveguide rod to vertically abut on the flat plate. Moreover, in addition to the piezoelectric actuator having a small moving amount, a mechanical translation platform having a large moving amount is needed. Besides, when the pressing amount is controlled by using the piezoelectric actuator having a small moving resolution, a control unit is required and it takes a few minutes to control and form the aperture. Therefore, for aperture formation, a large-scale apparatus such as a high voltage power supply or a feedback circuit is needed. In addition, a problem has arisen that costs for aperture formation are increased.
Additionally, according to the method of Japanese Patent Laid-Open No. 265520/1999, the fabrication object is the projection on the flat plate. However, since the aperture is formed by using the FIB, the time required to form one aperture is as long as ten minutes. Furthermore, because of using the FIB, a sample needs to be placed in vacuum. Thus, a problem has arisen that fabrication costs for aperture fabrication are increased.
SUMMARY OF THE INVENTION
The present invention overcomes the problems of the conventional art. An apparatus for forming an optical aperture comprises an object having a tip of conical or pyramidal shape, a stopper having almost the same height as that of the tip and an opaque film formed on the tip, and loading means for displacing a pressing body having approximately a planar part covering the tip and at least a part of the stopper by a force having a component acting toward the tip to form an aperture on the point of the tip. According to the apparatus for forming an optical aperture in the present invention, the displacement of the planar part of the pressing body is controlled by the stoppers which have almost the same height as that of the tip. Therefore, by simply pushing the planar part with a predetermined force it is easily possible to form an optical aperture. Additionally, it is possible to form an aperture in various environments such as in a vacuum, in a solution, and in the air. Furthermore, it does not require any specially designed controller when it is forming an aperture, resulting in simplification of the aperture forming apparatus. Additionally, it is easy to shorten the duration time of imposing the predetermined force, thus shortening the time for aperture formation and decreasing the cost of aperture formation.
A position controller sets a load target point to a load point of the loader. The load target point is disposed on a surface of the pressing body and over top of the tip. It is possible to control the displacement of the pressing body by a predetermined load toward the load target point. Therefore, optical apertures of uniform and minute size can be easily formed, making it easy to improve the yield of formation of optical apertures.
The apparatus has a plurality of the loaders. The loaders are capable of controlling the load for a plurality of load target points at the same time. The load target points are on a surface of the pressing body and over top of the tips. Since the object for aperture formation comprises plurality of tips and stoppers, it is possible to form an optical aperture on each of the plurality of the tips simultaneously by imposing the predetermined force on all the tips simultaneously. As a result, the fabrication time per an aperture can be shortened considerably, and the cost of aperture formation can be decreased.
A position controller for setting a load target point to a load point of the loader. The load target point being on a surface of the pressing body and over top of the tip. An auto-controller controls the loader and the position controller automatically. An automated control of the loading means and the positioning means results in the decrease in the cost of aperture formation.
Displacement of the pressing body, toward the tip for forming an aperture on a point of the tip, is generated by a weight striking against the pressing body. The apparatus for aperture formation has a simple mechanism in which a weight falls freely, thus lowering the cost of aperture formation.
The displacement of the pressing body, toward the tip for forming an aperture on a point of the tip, is generated by a pressure. The apparatus for aperture formation has a si

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for forming optical aperture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for forming optical aperture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for forming optical aperture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3316909

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.