Apparatus for fabrication of thin films

Coating apparatus – Gas or vapor deposition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S719000, C118S724000

Reexamination Certificate

active

06562140

ABSTRACT:

The present invention relates to an apparatus according to the preamble of claim
1
for fabrication of thin films.
In an apparatus disclosed herein, a substrate placed in a reaction space is subjected to alternate surface reactions of at least two different reactants suitable for fabricating a thin film. The vapor-phase reactants are fed in a repetitive and alternating manner each at a time from its own supply into a reaction space, wherein they are brought to react with the surface of a substrate in order to produce a solid-state thin film product on the substrate. Reaction products not adhering to the substrate and possible excess reactants are removed in gas phase from the reaction space.
Conventionally, thin films are grown out using vacuum evaporation deposition, Molecular Beam Epitaxy (MBE) and other similar vacuum deposition techniques, different variants of Chemical Vapor Deposition (CVD)(including low-pressure and metallo-organic CVD and plasma-enhanced CVD) or, alternatively, the above-mentioned deposition process based on alternate surface reactions, known in the art as the Atomic Layer Epitaxy, AlE is more conventionally used in recent articles and patents. In MBE and CVD processes, besides other variables, the thin film growth rate is also affected by the concentrations of the starting material inflows. To achieve a uniform surface smoothness of the thin films manufactured using these methods, the concentrations and reactivities of the starting materials must be kept equal on one side of the substrate. If the different starting materials are allowed to mix with each other prior to reaching the substrate surface as is the case in the CVD method, the possibility of mutual reactions between the reagents is always imminent. Herein arises a risk of microparticle formation already in the infeed lines of the gaseous reactants. Such microparticles generally have a deteriorating effect on the quality of the deposited thin film. However, the occurrence of premature reactions in MBE and CVD reactors can be avoided, e.g., by heating the reactants not earlier than only at the substrates. In addition to heating, the desired reaction can be initiated with the help of, e.g., plasma or other similar activating means.
In MBE and CVD processes, the growth rate of thin films is primarily adjusted by controlling the inflow rates of starting materials impinging on the substrate. By contrast, the thin film growth rate in the ALE process is controlled by the substrate surface properties, rather than by the concentrations or other qualities of the starting material inflows. In the ALE process, the only prerequisite is that the starting material is provided in a sufficient concentration for film growth on the substrate.
The ALE method is described, e.g., in FI Patents Nos. 52,359 and 57,975 as well as in U.S. Patents Nos. 4,058,430 and 4,389,973. Also in FI Patents Nos. 97,730, 97,731 and 100,409 are disclosed some apparatus constructions suited for implementing the method. Equipment for thin film deposition are further described in publications Material Science Report 4(7), 1989, p. 261, and Tyhjiötekniikka (title in English: Vacuum Techniques), ISBN 951-794-422-5, pp. 253-261.
In the ALE deposition method, atoms or molecules sweep over-the substrates thus continuously impinging on their surface so that a fully saturated molecular layer is formed thereon. According to the conventional techniques known from FI Patent Specification No. 57,975, the saturation step is followed by a protective gas pulse forming a diffusion barrier that sweeps away the excess starting material and the gaseous reaction products from the substrate. The successive pulses of different starting materials and the protective gas pulses forming diffusion barriers that separate the successive starting materials pulses from each other accomplish the growth of the thin film at a rate controlled by the surface chemistry properties of the different materials. To the function of the process it is irrelevant whether they are the gases or the substrates that are kept in motion, but rather, it is imperative that the different starting materials of the successive reaction steps are separated from each other and arranged to impinge on the substrate alternately.
Most vacuum evaporators operate on the so-called “single-shot” principle. Hereby, a vaporized atom or molecule can impinge on the substrate only once. If no reaction with the substrate surface occurs, the atom or molecule is rebound or re-vaporized so as to hit the apparatus walls or the vacuum pump undergoing condensation therein. In hot-wall reactors, an atom or molecule impinging on the reactor wall or the substrate may become re-vaporized and thus undergoing repeated impingements on the substrate surface. When applied to ALE reactors, this “multi-shot” principle can offer a number of benefits including improved efficiency of material consumption.
In practice, the “multi-shot” type ALE reactors are provided with a reactor chamber structure comprised of a plurality of adjacently or superimposedly stacked modular elements of which at least some are identical to each other and by milling, for instance, have reaction chambers made thereto with suitable cutouts and openings serving as the inlet and outlet channels. Alternatively, the substrates can be placed in an exposed manner in the interior of the vacuum vessel acting as the reaction space. In both arrangements, the reactor must be pressurized in conjunction with the substrate load/unload step.
In the fabrication of thin-film structures, it is conventional that the reactors are preferably run under constant process conditions stabilized in respect to the process temperature, operating pressure as well as for other process parameters. The goal herein is to prevent the attack of foreign particles and chemical impurities from the environment on the substrates and to avoid thermal cycling of the reactors that is a time-consuming step and may deteriorate the process reliability. In practice, these problems are overcome by using a separate substrate load/transfer chamber. The substrate loading chamber communicates with the reactors and is kept under a constant vacuum. The load and unload steps of the substrates are performed so that both the reactor and the loading chamber are taken to a vacuum, after which the valve (such as a gate valve) separating the two from each other is opened, whereby a robotic arm constructed into the loading chamber removes a processed substrate from the reaction chamber and loads a new substrate. Subsequently, the valve is closed and the process may start after the substrate and the reactor have attained their nominal process values. On the other side, the processed substrate is transferred via another controllable valve from the loading chamber to a vacuumized load lock, after which the load lock valve is closed. Next, the load lock may be pressurized, after which the substrate can be removed from the equipment via a third valve opening into the room space. Respectively, the next substrate to be processed can be transferred via the loading chamber into the reactor.
In conventional constructions, the substrate is placed on a heater so that the robotic arm can move the substrate to a desired point in the interior of the reactor, after which the substrate is elevated typically with the help of three pins directly upward for the duration of the robotic arm withdrawal. Next, the substrate is lowered onto a heatable susceptor platform by lowering said pins below the surface level of said susceptor, whereby the substrate remains resting in a good thermal contact with the susceptor.
In the above-described types of reactors, the gas flow enters the reaction space via a “shower head” located above the substrate so as to distribute the gas over the hot substrate, whereby the desired surface reaction can take place and form a desired type of thin-film layer on the substrate surface. If used in an ALCVD reactor, however, this type of infeed technique would require that, at the beginning and end of each reacta

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for fabrication of thin films does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for fabrication of thin films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for fabrication of thin films will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3029598

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.