Apparatus for consolidating manufacturing of computing devices

Data processing: generic control systems or specific application – Specific application – apparatus or process – Article handling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S230000, C700S095000

Reexamination Certificate

active

06516242

ABSTRACT:

BACKGROUND
The disclosures herein relate generally to computer systems, and more particularly, to a process and apparatus for physically consolidating and streamlining the manufacturing of computer systems in a build-to-order environment.
Traditionally, manufacturing systems have been designed and constructed based upon a build-to-stock model where large quantities of identical products are assembled to meet forecasted demand and warehoused until that demand occurs. Such manufacturing systems provide economies of scale based upon the large quantities of identical units and can be optimized by increasing the speed with which each manufacturing step is completed. Because build-to-stock manufacturing systems rely on known product configurations, each step in the manufacturing process is known in advance, and so the manufacturing system utilizes progressive build techniques to optimize each stage in the serial assembly process. For products (e.g. a computer system) that include sensitive components, progressive build manufacturing systems can be carefully planned in advance to protect those sensitive components. Once the manufacturing system becomes operational, it will build the same product repeatedly, using the optimized steps.
However, when the process is adapted to build a different product, or a different version of the same product, the manufacturing system must be modified and re-optimized to ensure that the system still protects sensitive components. Moreover, since the progressive build process is serial, each stage depends on timely completion of the previous stage, and thus the entire process is susceptible to problems, inefficiencies, and failures in any of the stages of the system. Additionally, progressive-build manufacturing systems operating in a build-to-stock environment are relatively inflexible, limiting the ability of the manufacturing system to fill small orders economically and to control inventory.
One method used to increase performance in progressive-build manufacturing processes is to include a process step in which identical kits are prepared that hold the components needed to assemble a particular product or to complete a particular manufacturing step. In this way some of the time normally required to select parts for a particular product or manufacturing step can be reduced, and some manufacturing steps can more easily be performed in one location or by one operator or piece of manufacturing equipment (e.g. an industrial robot). For example, U.S. Pat. No. 4,815,190 discloses the use of automated and manual kitting stages for producing identical kits for automobile sub-assemblies. One advantage to using identical kits is that it is relatively easy to know if all of the parts needed to assemble a particular product are present in the kit; a missing part stands out because each kit should always have the same set of components.
As an alternative to progressive-build manufacturing systems which are often faced with the problem of large dwell times, i.e. time periods where a product being assembled must wait before moving to a subsequent assembly stage, some manufacturing systems have been shifted to continuous flow manufacturing (CFM) methods. In general, CFM methods employ a demand-driven pull system for inventory control and movement of components into the assembly process. This can include the use of kanban techniques for inventory control and movement. CFM also supports mixed-model manufacturing continuous flow production lines. CFM systems offer continuous flow of value added activities, eliminating wasted motion and dwell times. Other terms often used for CFMI include Just-In-Time (JIT) manufacturing, Flexible and Agile Manufacturing, Synchronous Manufacturing and Demand Based Conversion.
Personal computers, servers, workstations, portables, embedded systems and other computer systems are typically assembled in manufacturing systems designed for build-to-stock environments. A typical personal computer system includes a processor, associated memory and control logic and a number of peripheral devices that provide input and output (I/O) for the system. Such peripheral devices include, for example, compact disk read-only memory (CD-ROM) drives, hard disk drives, floppy disk drives, and other mass storage devices such as tape drives, compact disk recordable (CD-R) drives, digital video/versatile disk (DVD) drives, or the like.
Manufacturing computer systems becomes inefficient when the number of identical units is decreased and process steps are changed as orders change, both of which are characteristics of a build-to-order environment where computer systems (or products generally) are manufactured or assembled only after an order for that particular computer system has been placed. As a result, the conventional manufacturing systems do not adapt well to the build-to-order environment and can limit the ability to fill small orders, require extra inventory, generate more work-in-process, and be globally constrained by the slowest process step. This process also requires line changeovers and new tooling when change is required. One attempt to adapt and to improve the efficiency of conventional manufacturing systems has been to reduce the number of components prepared in advance of orders. By limiting such in-process inventory, the line can change configurations more easily as orders change. However, this scheme is still limited in its efficiency for smaller orders in the build-to-order environment.
Because computer systems manufacturers have recognized that a build-to-order environment is advantageous and often can better react to the speed with which product designs and customer expectations change, there is a need to provide manufacturing systems and methods that more efficiently integrate with the build-to-order model while ensuring that high quality, defect free products are produced.
Current manufacturing of build-to-order computers is limited by the particular manufacturing line used. For instance, to double the productivity of a current factory manufacturing line process for a given floor space (in terms of units/hour/square foot (Units/Hr./Sq.Ft.)), additional manufacturing plants will be necessary to meet an increased demand. The cost of building new manufacturing plants can be substantial, for example, at an average cost of approximately $100M or more per plant. Product quality and manufacturing flexibility suffer, wherein generally only one product line can be built on any given assembly line at a time. Merely doubling the existing manufacturing line process further suffers from an inability to adjust to changes in product demand and an inability to improve floor space utilization. In addition, profitability and customer experience suffer degradation with a mere doubling of an existing manufacturing line process.
Referring briefly to
FIG. 1
, a flow diagram view of a computer build-to-order manufacturing process is illustrated. In general, the manufacturing process
10
includes receipt of a customer order
12
, kitting of parts
14
, motherboard preparation
16
, assembly and quick test
18
, burn (i.e., software download and extended test)
20
, Federal Communication Commission testing (FCC test and label application)
22
, high potential (HI POT) testing
24
, wipe down (inspection and cleaning of computer chassis)
26
, document kitting
28
, boxing
30
, transport to the distribution center
32
, shipping
34
, and finally, customer receipt
36
.
FIG. 2
illustrates a plan view of various portions of the distributed manufacturing line in the manufacture of build-to-order computer systems. The distributed manufacturing line is generally indicated by the reference numeral
10
a
. Separate stations or areas are provided for each of the portions of the distributed manufacturing line, for example, as follows. Motherboard preparation is generally indicated by reference numeral
16
a
. Assembly/quick test is generally indicated by reference numeral
18
a
. Electrical mechanical repair (EMR) is generally indicated by reference numeral
19
. Bur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for consolidating manufacturing of computing devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for consolidating manufacturing of computing devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for consolidating manufacturing of computing devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3166451

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.