Optics: measuring and testing – By polarized light examination – Of surface reflection
Reexamination Certificate
2003-03-24
2004-08-10
Smith, Zandra V. (Department: 2877)
Optics: measuring and testing
By polarized light examination
Of surface reflection
Reexamination Certificate
active
06774997
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to optical analyzers, and more particularly to an optical measurement system having a stable single wavelength ellipsometer and a broadband spectroscopic measurement module to accurately characterize multi-layer thin film stacks.
BACKGROUND OF THE INVENTION
There is considerable interest in developing systems for accurately measuring the thickness and/or composition of multi-layer thin films. The need is particularly acute in the semiconductor manufacturing industry where the thickness of these thin film oxide layers on semiconductor substrates is measured. To be useful, the measurement system must be able to determine the thickness and/or composition of films with a high degree of accuracy. The preferred measurement systems rely on non-contact, optical measurement techniques, which can be performed during the semiconductor manufacturing process without damaging the wafer sample. Such optical measurement techniques include directing a probe beam to the sample, and measuring one or more optical parameters of the reflected probe beam.
In order to increase measurement accuracy and to gain additional information about the target sample, multiple optical measuring devices are often incorporated into a single composite optical measurement system. For example, the present assignee has marketed a product called OPTI-PROBE, which incorporates several optical measurement devices, including a Beam Profile Reflectometer (BPR), a Beam Profile Ellipsometer (BPE), and a Broadband Reflective Spectrometer (BRS). Each of these devices measures parameters of optical beams reflected by the target sample. The BPR and BPE devices utilize technology described in U.S. Pat. Nos. 4,999,014 and 5,181,080 respectively, which are incorporated herein by reference.
The composite measurement system mentioned above combines the measured results of each of the measurement devices to precisely derive the thickness and composition of the thin film and substrate of the target sample. However, the accuracy of the measured results depends upon precise initial and periodic calibration of the measurement devices in the optical measurement system. Further, recently developed measurement devices have increased sensitivity to more accurately measure thinner films and provide additional information about film and substrate composition. These newer systems require very accurate initial calibration. Further, heat, contamination, optical damage, alignment, etc., that can occur over time in optical measurement devices, affect the accuracy of the measured results. Therefore, periodic calibration is necessary to maintain the accuracy of the composite optical measurement system.
It is known to calibrate optical measurement devices by providing a reference sample having a known substrate, with a thin film thereon having a known composition and thickness. The reference sample is placed in the measurement system, and each optical measurement device measures the optical parameters of the reference sample, and is calibrated using the results from the reference sample and comparing them to the known film thickness and composition. A common reference sample is a “native oxide” reference sample, which is a silicon substrate with an oxide layer formed thereon having a known thickness (about 20 angstroms). After fabrication, the reference sample is kept in a non-oxygen environment to minimize any further oxidation and contamination that changes the thickness of the reference sample film away from the known thickness, and thus reduces the effectiveness of the reference sample for accurate calibration. The same reference sample can be reused to periodically calibrate the measurement system. However, if and when the amount of oxidation or contamination of the reference sample changes the film thickness significantly from the known thickness, the reference sample must be discarded.
For many optical measurement devices, reference samples with known thicknesses have been effective for system calibration. Oxidation and contamination that routinely occurs over time with reference samples is tolerable because the film thickness change resulting from the oxidation/contamination is relatively insignificant compared to the overall thickness of the film (around 100 angstroms). However, new ultra-sensitive optical measurement systems have been recently developed that can measure film layers with thicknesses less than 10 angstroms. These systems require reference samples having film thicknesses on the order of 20 angstroms for accurate calibration. For such thin film reference samples, however, the changes in film layer thickness resulting from even minimal oxidation or contamination are significant compared to the overall “known” film layer thickness, and result in significant calibration error. Therefore, it is extremely difficult, if not impossible, to provide a native oxide reference sample with a known thickness that is stable enough over time to be used for periodic calibration of ultra-sensitive optical measurement systems.
There is a need for a calibration method for ultra-sensitive optical measurement devices that can utilize a reference sample that does not have a stable or known film thickness.
There is also a need in the industry to improve the accuracy of these type of measuring systems to permit characterization of samples having multiple thin film layers formed thereon. More particularly, in the semiconductor industry, semiconductor material substrates are now being fabricated with multiple thin film layers. Each film layer can be formed from a different material. Common layer materials include oxides, nitrides, polysilicon, titanium and titanium-nitride.
Attempts to characterize samples having multiple thin layers with conventional techniques is difficult since each layer has a different thickness and different optical characteristics. The best approaches found to date to characterize such complex stacks is to utilize multiple measurement techniques which generate independent data that can be analyzed by a processor. Devices now exist which are capable of making both ellipsometric (phase) and spectrophotometric (magnitude) measurements and integrating the results in a microprocessor. The ellipsometers in these devices can include multiple wavelength and multiple angle of incidence measurements. Similarly, the spectrophotometers in some of these devices can be arranged to make measurements at multiple angles of incidence.
While these systems have had reasonable success, further accuracy in analyzing the characteristics of individual layers in a multi-layer stack is always desirable. The subject system, which includes a wavelength stable calibration ellipsometer can be modified to improve the characterization of individual layers of multi-layer thin film stack.
SUMMARY OF THE INVENTION
The present invention is a thin film optical measurement system with a wavelength stable ellipsometer that can be used for calibration and to enhance the characterization of multi-layer thin film stacks. When used for calibration purposes, the stable wavelength ellipsometer functions to precisely determine the thickness of a film on a reference sample. The measured results from the calibration ellipsometer are used to calibrate other optical measurement devices in the thin film optical measurement system. By not having to supply a reference sample with a predetermined known film thickness, a reference sample having a film with a known composition can be repeatedly used to calibrate ultra-sensitive optical measurement devices, even if oxidation or contamination of the reference sample changes the thickness of the film over time.
The calibration reference ellipsometer uses a reference sample that has at least a partially known composition to calibrate at least one other non-contact optical measurement device. The reference ellipsometer includes a light generator that generates a quasi-monochromatic beam of light having a known wavelength and a known polarization for interacting with the reference sample. T
Opsal Jon
Rosencwaig Allan
Smith Zandra V.
Stallman & Pollock LLP
Therma-Wave, Inc.
LandOfFree
Apparatus for analyzing multi-layer thin film stacks on... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for analyzing multi-layer thin film stacks on..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for analyzing multi-layer thin film stacks on... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3356233