Telecommunications – Transmitter and receiver at separate stations – Having measuring – testing – or monitoring of system or part
Reexamination Certificate
1998-12-08
2001-08-28
Hunter, Daniel (Department: 2683)
Telecommunications
Transmitter and receiver at separate stations
Having measuring, testing, or monitoring of system or part
C455S063300, C455S067150, C455S561000
Reexamination Certificate
active
06282408
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to wireless communication systems, and more particularly, an apparatus and method for measuring air interference of a base station.
DESCRIPTION OF THE RELATED ART
It is not necessary to consider air interference in the prosperity of wired communication. Air interference inevitably exists in wireless communication and causes problems such that the air interference is critical to the integrity of a cellular network in a mobile communication system. The market size of present wireless communication systems has grown by geometrical progression from he early AMPS (Advanced Mobile Phone Service) system to CDMA (Code Division Multiple access) system and PCS (Personal Communication Services) systems, etc., in order to support daily increasing subscribers and practically to escape from failed communication and call termination due the interference. However, the problem of air interference has remained in succession as an inevitable one.
In the conventional technologies rather than the present air interference measurement set (AIMS), instrumentation-equipment such as an electro magnetic strength measuring instrument (ESI) or radio frequency instrument (RFI) has been used. These systems/methods are only able to perform measurements at any one node of a cellular network and for any one node or one FA (Frequency Assignment) at once. Moreover, human-powered monitoring has been needed for extra data-backup equipment to continuously measure long-time air interference. Practically, the measurement method as stated above has left much to be desired to authorize the result of the measurement as absolute interference data for the base station constituting the cellular network, and requires considerably difficult stages.
The problems in the conventional method as stated above are summarized as follows: First, it is impossible to exactly gather interference data for the base station system. Second, the method and procedure for measurement is difficult. Third, it may result in a time-loss due to the separate measurement per-FA, and fourth, there is no absolute measurement equipment for measuring air interference of the base station.
U.S. Pat. No. 4,837,801 to Shimura, discloses a base station capable of monitoring occurrence of interference on every transmission. The systems uses a control radio wave monitoring circuit to monitor the control radio wave on transmission of an allocated one of the speech radio waves and to determine whether or not interference occurs in the control radio wave due to the transmission. When interference occurs in the control radio wave, the allocated speech radio wave is changed to another speech radio wave under the control of a line controller.
U.S. Pat. No. 5,603,093 to Yoshimi et al. discloses a method for monitoring the state of interference by a base station of a mobile radio communication system. The mobile station measures the field intensity and bit error rate (BER) of a downlink radio wave from a base station at each measurement timing and reports the results to the base station. The base station compares the measured results with a reference characteristic to determine if they are normal or not. The base station receives the measure results from the mobile station for a fixed period of time, and processes the results statistically to determine the state of interference.
SUMMARY OF THE INVENTION
The present invention is intended to provide an apparatus and method for measuring air interference of a base station, and more particularly an apparatus and method that makes it possible to automatically perform operations such as more exactly gathering, conveniently storing, analyzing, and long-time data gathering for air interference of a base station.
For solving the conventional problems, a preferable embodiment of the apparatus for measuring air interference of base station comprises: an RF (Radio Frequency) measurement path switch set to selectively measure each path and sector, which is outputted from the base station; a low noise amplifier (LNA) inputting the signal outputted from the RF (Radio Frequency) switch and amplifying the signal to be within an effective level; a control computer controlling a decoding unit and a spectrum analyzer as a core of the air interference measurement set (AIMS); a decoding unit which generates a decode-output to control the RF switch by receiving data from a parallel port of the control computer; and a spectrum analyzer for automatically performing the interference-measurement in a remote state by receiving the output signal of the low noise amplifier (LNA) and then transmitting and receiving data with the control computer through a general purpose interface bus.
According to the apparatus of present invention, the RF switch has 6 inputs to select an A B path of a maximum of 3 sectors. The RF switch has different frequency bands according to the kinds of base stations, such as, for example, digital cellular system and personal communication services system. The low noise amplifier (LNA) is different according to the kinds of base stations, and has a minimum 35 dB as a basic amplification gain and the output passing through the low noise amplifier (LNA) has a minimum −80 dB or more.
A decoding unit generates a decode-output and simultaneously generates decode-output for activating 7-segment LEDs (Light Emitted Diodes) to indicate the present switching point of the RF switch. The decoding unit receives 8-bit control data through a parallel port to control the RF switch and the decoding unit further includes a toggle switch to manually control the RF switch when there are no parallel inputs. A general notebook computer is used for the control computer, the general notebook personal computer having PCMCIA-GPIB (General Purpose Interface Bus) card.
For solving the conventional problems, a preferable embodiment of the method for measuring air interference of base station comprises a step of inputting a signal to the input port corresponding to each sector and path of an air interference measurement set (AIMS) through external connection ports. The signal being inputted through an antenna of the base station and being passed through a radio front end unit (RFEU) A and B path, and a step of inputting the output of the RF switch to a fixed attenuator. Each sector and path of the air interference measurement set (AIMS) is connected to 6 inputs of 6:1 (six to 1) RF switch respectively. The output signal of the fixed attenuator is amplified in the low noise amplifier (LNA) to such a level that it can be measured as channel power using a spectrum analyzer and the amplified signal is input to the RF input ports of the spectrum analyzer. The channel power of the FA 1.23 MHz band, for example, is measured the spectrum analyzer and the result is transmitted to the control computer. The channel power is presently input through the RF switch in the channel power measurement mode, and the spectrum analyzer is automatically set for default information including frequency measurement in response to control signals of the PCMCIA-GPIB port of the control computer. Data is stored in combination with the result of channel power measurement, and the present measurement time. A switching command is then sent through the parallel port to the decoding unit of the air interference measurement set (AIMS) by the control computer. The switching command is for switching the RF switch to the next measurement point. Once switched, the channel power is read for the corresponding path by the spectrum analyzer and the combined data is stored by the control computer, when the decoding unit switches the RF switch to the next point. The decoding unit receives the switching command and the control computer sets the spectrum analyzer to the next measurement FA. The steps for the measurement are repeated from the beginning, when the RF switch has moved between points six times.
According to the method of the present invention, the step of repeating the steps is continuously performed until the a stop command is i
Dilworth & Barrese LLP
Hunter Daniel
Samsung Electronics Co,. Ltd.
Woldetatios Yemane
LandOfFree
Apparatus and method for measuring air interference of a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for measuring air interference of a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for measuring air interference of a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2485373