Apparatus and method for forming deposited film

Coating apparatus – Gas or vapor deposition – With treating means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S718000, C156S345470

Reexamination Certificate

active

06632284

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus for forming a deposited film in which plasma is generated between an electrical power application electrode and a substrate functioning as an electrode arranged opposite to the electrical power application electrode in a vacuum container and a reactive gas introduced into the vacuum container is decomposed to form a deposited film on the substrate.
2. Related Background Art
One of the typical examples of the clean energy sources may be a solar cell. The solar cell is an electronic device which utilizes the photovoltaic effect of converting light energy such as solar energy into electrical energy, and it has lately attracted considerable attention as a part of preventive measures taken in the future against energy problems.
Amorphous silicon has lately attracted notice as a material which can realize a lower-cost solar cell. Amorphous semiconductors, such as amorphous silicon, have occupied attention as materials for use in various types devices, because they can be formed into thin films and be made large in area, their compositional degree of freedom is high, and because their electrical and optical properties can be controlled over a wide range. For amorphous silicon, its optical absorption coefficient is large, compared with silicon crystal, particularly for the light in the vicinity of the peak of solar energy distribution and its film forming temperature is low. Further it has characteristics such that its deposited films can be formed directly from a raw material by using glow discharge and junction formation is easily conducted. Although amorphous silicon has such characteristics as described above and, as for the performance, amorphous silicon having a high conversion factor has already been obtained, it has been desired that its costs should be further reduced. One of the obstacles of realizing lower-cost amorphous silicon may be that its film forming rate in the manufacturing process is low.
In a p-i-n amorphous silicon solar cell produced by the glow-discharge gas decomposition method, a deposited film has been formed in the direction of the film thickness of an i-type semiconductor layer at a fixed film forming rate, for example, at a low rate of 0.1 to 2 Å/sec; therefore, it has taken about 30 minutes to 2 hours to complete the formation of an i-type semiconductor film 4000 Å thick. As one example of the methods of performing high-rate film formation, an attempt has been made to perform film formation utilizing 100% SiH
4
gas or 100% Si
2
B
6
gas at a high rate of 5 to 100 Å/sec. Further, in Japanese Patent Publication No. 5-56850, there is disclosed a method in which a film forming rate is increased by decreasing a distance between a power application electrode and a substrate functioning as an electrode.
In the conventional apparatus for forming a deposited film, however, the deformation of the power application electrode may sometimes make it difficult to form a uniform deposited film. Specifically, in order to improve the optical and electrical properties of the deposited film to be formed, the members within the electric discharge chamber need to be heated to a desired temperature, and moreover, their temperature is further increased due to the collision of the particles, such as electrons and ions, accelerated by plasma discharge against the members within the electric discharge chamber. Furthermore, the deposited film is formed on portions other than the substrate, for example, on the power application electrode. As a result, the thermal expansion due to the thermal energy and the stress due to the formation of the deposited film cause deformation of the power application electrode, and hence, generation of non-uniform plasma. This may sometimes make it difficult to form a uniform deposit film.
In Japanese Patent Publication No. 5-73327, there is disclosed an apparatus in which an electric power application electrode is split into a plurality of electrodes and the split electrodes are largely spaced at a large distance and electrically connected to a connection member which allows the distance between adjacent electrodes to be variable. A similar deformation is caused in the substrate, and however the deformation of the substrate can be kept slight by taking preventive measures of, for example, fixing the substrate fast to a substrate holder, or when the substrate is in a strip form, drawing it with a magnet or applying a strong tension to it.
However, when electrically connecting adjacent split electrodes with a connection member, as disclosed in Japanese Patent Publication No. 5-73327, the thickness of the connection plate and the bolts used for connecting the connection plate to the split electrodes affect the distance between the electrode and the substrate as projections, which may cause a disturbance in plasma at such projection-like portions. Furthermore, it is difficult to arrange a plurality of split electrodes in a planar state in one plane simply by connecting the split electrodes with a connection plate, and the decrease of the planeness of split electrodes, in particular in cases where the distance between the electrode and the substrate is small, causes non-uniformity in plasma, which may sometimes give rise to variation in a film forming rate depending on a position on the substrate.
Furthermore, as described above, in the conventional apparatus for forming a deposited film, deposited films are inevitably formed on portions other than the substrate which is an intended portion, such as the power application electrode, because of their configuration. The films formed on the portions other than the substrate which is an intended portion tend to peel, and the films having peeled become the cause of contamination and dust in the subsequent film formation. In order to prevent the quality degradation of the film formed on the substrate due to such contamination and dust, the deposited films formed on the portions other than the substrate need to be removed every time the substrate is replaced, in addition, the power application electrode also needs to be replaced at periodic intervals. This has prevented the continuous production of deposited films and may sometimes prevent the improvement in mass production of the same. In particular, at the time of forming a deposited film with a large area, since the power application electrode becomes large, it takes a lot of time to do such operations as replacing and cleaning the power application electrode frequently, which has been one of the causes of high production costs.
SUMMARY OF THE INVENTION
An object of the present invention is to provide an apparatus and method for forming a deposited film which enable the generation of uniform plasma required for uniform formation of a deposited film and also enable the cut-down of costs required for formation of the deposited film.
In order to attain the above object, the present invention provides an apparatus for forming a deposited film, comprising a vacuum container containing a pair of electrodes consisting of an electric power application electrode to which electric power is applied and a substrate on which the deposited film is to be formed, in which the deposited film is formed on the substrate by generating plasma between the substrate and the power application electrode to decompose a gas, as a raw material for the deposited film, introduced into the vacuum container, wherein the power application electrode is consisted of a single planar electrode and a plurality of split electrodes electrically connected to the planar electrode and each having an area smaller than that of the plane of the planar electrode, and the plurality of split electrodes are arranged on the substrate-facing side of the planar electrode in such a manner as to form at least one substantially planar electrode layer having almost the same shape as that of the plane of the planar electrode.
Further, the present invention provides a method of forming a deposited fi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for forming deposited film does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for forming deposited film, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for forming deposited film will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3135132

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.