Check-actuated control mechanisms – Including means to test validity of check – By testing material composition
Reexamination Certificate
1999-10-14
2002-10-22
Olszewski, Robert P. (Department: 2167)
Check-actuated control mechanisms
Including means to test validity of check
By testing material composition
C194S334000
Reexamination Certificate
active
06467604
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a coin validator.
BACKGROUND TO THE INVENTION
U.S. Pat. No. 4,474,281 discloses a coin validation apparatus wherein a pair of optical beams are directed across the coin path of a validator, substantially in the plane of a coin under test. The optical beams are spaced along the direction of travel of a coin in the coin path. The diameter of a coin is determined by timing the periods during which each of the optical beams is interrupted by a passing coin, determining a value for the speed of the coin as it crosses the beams, deriving two diameter values from the timed periods and the speed values, and averaging the resultant values. The average produced is proportional to the diameter of the coin interrupting the beams.
If the apparatus of U.S. Pat. No. 4,474,281 is to function correctly, a coin to be tested must be in free fall before it encounters the first optical beam. A problem arises from this in that it is difficult to produce a compact validator with a sufficient run-in for a coin to be in free fall, before it interrupts the first optical beam. The problem is particularly acute in the case of validators for the large tokens used in some casinos.
DE-A-2 724 868 discloses an apparatus in which the diameter of a coin is checked on the basis of the time between the leading edge of the coin reaching a lower reference and the trailing edge of the coin leaving an upper reference position. However, this apparatus suffers from two disadvantages. Firstly, a counter is started when the coin reaches the upper reference position. Consequently, the upper reference position must be located at least the diameter of the largest acceptable coin from the coin insertion slot. Secondly, the example, in which the diameter of a coin is checked on the basis of the time between the leading edge of the coin reaching a lower reference and the trailing edge of the coin leaving an upper reference position, cannot be used with coins whose diameters are not greater than the separation of the reference positions.
GBA-1 405 936 discloses a coin validation apparatus comprising means defining first and second reference positions spaced along a coin path, sensor means for detecting a trailing point on a coin passing the first reference position and a leading point on the coin reaching the second reference, and processing means for determining the velocity of a coin under test on the basis of the output of the sensor means. However, the diameter of the coin is checked using additional sensors.
In the following the term “coin” means coin, token and any similar objects representing value.
SUMMARY OF THE INVENTION
It is an aim of the present invention to overcome the afore-mentioned disadvantages of the prior art.
According to a first aspect of the present invention, there is provided a coin validation apparatus comprisingmeans defining first and second reference positions spaced along a coin path, sensor means for detecting a trailing point on a coin passing the first reference position and a leading point on the coin reaching the second reference position, and processing means for checking the diameter of a coin under test on the basis of said trailing point passing the first reference position and said leading point reaching the second reference position, characterized in that the processing means checks the diameter of the coin under test without reference to said leading point reaching the first reference position. Preferably, the processing means checks the diameter of coin under test on the basis of the time difference between said trailing point passing the first reference position and said leading point reaching the second reference position.
In some embodiments of the present invention, the diameter checked is the physical diameter of a coin under test. However, in other embodiments the diameter is checked on the basis of characterising signal representative of a property related to diameter but dependent also on additional factors such a the material from which a coin under test is made. The reference positions will, in practice, generally have a non-infinitesimal dimension in the direction of coin travel.
Thus, as the diameter-related characteristic determination is based on the time of a coin leaving the first reference position, there is no need for the run-in required by the prior art. Indeed, the first reference position can be located such that a coin extends across it even before a coin is fully in the validator.
As a result of friction between a coin under test and the walls of the passageway and other factors, the speed of a coin passing through the optical beams is indeterminate and some correction for this is normally required. However, if the gap between the reference positions is the same as the diameter of a coin of interest, no correction is required. This is because, for a valid coin, the trailing point leaves the upstream reference position at the same time as the leading point enters the downstream reference position, regardless of the speed of the coin. Therefore, in one preferred embodiment, the reference positions are separated by the diameter of a coin type to be accepted by the validator. Additional reference positions could be added, each spaced from the first by the diameter of a coin type to be accepted. However, if more than a few denominations of coin are to be accepted, the complexity of this arrangement becomes undesirable.
In order to avoid this undesirable complexity, another preferred embodiment includes means to determine a velocity dependent value for a coin passing the reference positions, wherein the processing means is further responsive to the velocity dependent value for a coin under test to produce the characterising signal.
The means to determine a velocity dependent value may comprise means to determine the time elapsing between the trailing point passing the first reference position and the trailing point passing the second reference position.
However, the use of the first and second reference positions for velocity determination is not ideal if the coin accept gate is only a short distance below the second reference position. In such a case there may be insufficient time to process coin characterizing signals before a decision must be made whether to open the accept gate. In order to overcome this situation, the means to determine a velocity dependent value may comprise a third reference position downstream of the first reference position and further sensor means for detecting said leading point reaching the third reference position, wherein the processing means is responsive to the sensor means to derive said velocity dependent value on the basis of the time difference between said leading point reaching the second reference position and said leading point reaching the third reference position. Thus, all the coin characterizing data is obtained before the coin has passed fully through the last reference position.
Preferably, the processing means produces the characterizing signal on the basis of the result of:
(
t
1
-
t
2
)
(
t
3
-
t
2
)
where:
t
1
is the time of trailing point passing the upper first reference position, and
t
2
and t
3
are the times of the leading point reaching the second and third reference positions.
The trailing and leading points on a coin under test will be substantially on the circumference of the coin with some types of sensor. However, the operation of other sensors means the leading and trailing points will be, located radially inward of the coins circumference with one on either side of a diameter of the coin, which runs perpendicular to the coin's direction of travel
Preferably, the sensor means comprises a beam of optical radiation crossing the coin path and a detector therefor for each said reference position. More preferably, the coin path has a breadth to accommodate the thickness of a coin under test, a width to accommodate the coin's diameter, and a length along which coins under test can pass edgewise, wherein the sensor means o includes emitter me
Bell Malcolm Reginald Hallas
Wood Dennis
Coin Controls Ltd.
Jaketic Bryan
Morgan & Finnegan , LLP
Olszewski Robert P.
LandOfFree
Apparatus and method for determining the validity of a coin does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for determining the validity of a coin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for determining the validity of a coin will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2983694