Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus access regulation
Reexamination Certificate
1999-02-19
2001-06-26
Etienne, Ario (Department: 2781)
Electrical computers and digital data processing systems: input/
Intrasystem connection
Bus access regulation
C361S796000, C361S788000, C439S061000
Reexamination Certificate
active
06253266
ABSTRACT:
TECHNICAL FIELD
The present invention is related to circuit card cages and more specifically, to a card cage system that employs a redundancy scheme to allow continuous service to and from circuit cards located in the card cage.
BACKGROUND
A card cage, which is also known as a sub rack, is used to house circuit cards that perform various actions in a communications network. The circuit cards, which are also known as processor modules, boards, circuit boards, printed circuit boards, and plug-in units, contain electronic components (e.g. integrated circuits, resistors, capacitors, etc.) that aid in the processing of a requested action. The card receives a request to process the requested action and, after processing the requested action, sends the results to the communication entity that originated the request. The entity originating the request can be a device exterior to the card cage (e.g. a telephone, a computer, a communications switch, a card in another card cage, etc.) or may be a device in the card cage (e.g. a card or any device such as a processor on a card, etc.).
A typical card cage provides a connection and power to a card via the back-plane of the card cage. Referring to
FIG. 1
, a prior art card cage system
10
, that includes a card cage
12
and a plurality of cards
16
, is displayed. When one or more of the cards
16
are placed in the card cage
12
, a back portion of the cards
16
referred to as connector
18
, is electrically coupled to a portion of the back-plane
14
that is capable of receiving connector
18
. This coupling allows for the transfer of signals to and from the card corresponding to the requested action. If the back plane
14
becomes inactive (e.g. by going out of service, when a component on the back plane becomes corrupt, etc.), however, the cards
16
will no longer be able to receive power and thus will be unable to perform their intended functionality. This problem is compounded when many cards are concurrently being utilized or when the cards being utilized perform various functions. In such a situation, services may become unavailable, isolated outages may occur and an entire communications network may be crippled.
To overcome this serious situation in prior art card cages, the back plane
14
must be powered off and then removed. Once a prognosis is made as to the reasons(s) for failure, the back plane
14
is either repaired or replaced and then placed back into the card cage
12
. As a result, considerable down time is typically encountered causing an adverse effect on the efficiency and quality of the communications network. Thus, there exists a need for a card cage, card and method of information transfer that overcomes the problems described above.
SUMMARY OF THE INVENTION
These and other objects, features and technical advantages are achieved by a system and method which provide multiple planes of a card cage for receiving circuit cards. In the embodiment disclosed herein, the card cage has a top plane and a bottom plane each with connectors for receiving circuit cards. Alternatively, multiple redundant planes may be placed on any location or combination of locations with the card cage, such as on the back, top, bottom or side walls of the card cage. When a plane is active may provide information, such as power, timing, control and/or signaling data, to the circuit cards that are installed in the card cage and coupled to the plane.
Each active plane is capable of load sharing with the other planes provided in the card cage. Thus, in a preferred embodiment a percentage of information may be provided to cards within the card cage by one active plane and a percentage of information provided to cards within the card cage by another active plane. Alternatively, either plane may be a primary plane that provides all of the information to the cards, while the other card is in a standby condition in case the primary plane fails or is taken out of service.
In a preferred embodiment, each plane is operable in a redundant manner, such that if one plane becomes inactive the other plane(s) that is still active within the card cage effectively takes over for the inactive plane to prevent disruption in the service to the circuit cards. Thus, an inactive plane may be removed, repaired or replaced without disrupting service to cards contained within a card cage because other active plane(s) of the card cage continue servicing the cards.
Additionally, a circuit card is provided having multiple connectors for coupling to the multiple planes of the card cage. A circuit card has a connector on the top of the card and a connector on the bottom of the card, which allow such a circuit card to be received by a card cage having top and bottom planes. Both such connectors are capable of providing an interface for information between the circuit card and dual redundant planes of a card cage. Accordingly, each of the multiple connectors on a circuit card provide a redundant interface for the planes in a card cage.
Furthermore, a computer program may be executing within the system to control the operation of the dual redundant planes of a card cage. Such a program preferably executes to determine whether each plane of the card cage is active or capable of being active. Preferably, the program further executes to control or distribute a percentage of information (or the “load”) provided to installed cards from each active plane. Thus, the program preferably executes to control load sharing between the active planes of a card cage. Also, the program executes to control the redundancy of the planes of a card cage to prevent disruption of the service to the installed cards. That is, the program compensates for an inactive plane by distributing information to installed cards via a remaining active plane(s) within the card cage.
The disclosed system further provides for redundancy among the installed cards. Each active card is assigned to perform one or more applications. Preferably, more than one card runs each required application. Spare or redundant cards are also provided in the card cage to assume the functions of any active card that is take out of service, is unable to support the application or fails. Dedicated control cards, which are also installed in the card cage, may additionally monitor the functioning of the planes and the other installed cards and may control which applications are performed by the cards.
It should be appreciated that a technical advantage of the present invention is that a system and method for information transfer is provided wherein load sharing may be performed among multiple planes of a card cage. Accordingly, more efficient operation of such a card cage may be accomplished. Additionally, because each of the multiple planes of a card cage may be sharing a portion of the “load,” problems with any one of the multiple planes may be recognized more quickly and such problems may be recognized at opportune times. That is, problems with one plane may be recognized and remedied while other planes are active within the card cage, rather than first determining whether there are any problems with a plane when the system is depending on that plane's operation.
A further technical advantage of the present invention is that a system and method for information transfer is provided wherein redundancy may be available between multiple planes of a card cage. Accordingly, if one plane of a card cage becomes inactive, another plane of the card cage that is active may operate to prevent disruption of service to cards contained within the card cage. As a result, less down time may be recognized for the system.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment dis
Etienne Ario
Fulbright & Jaworski L.L.P.
INET Technologies, Inc.
LandOfFree
Apparatus and method for controlling information flow in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for controlling information flow in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for controlling information flow in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2501609