Radiant energy – Irradiation of objects or material – Irradiation of semiconductor devices
Reexamination Certificate
1999-01-06
2001-07-10
Nguyen, Kiet T. (Department: 2881)
Radiant energy
Irradiation of objects or material
Irradiation of semiconductor devices
Reexamination Certificate
active
06259106
ABSTRACT:
BACKGROUND
1. Field of the Invention
The present invention relates to lithography and to electron (or other energy) beam columns and more specifically to a structure and method for generating variable shaped beams.
2. Description of The Related Art
It is well known in the field of lithography (pattern generation) that it is desirable to increase the throughput of pattern generation systems. Two main applications for such pattern generation systems are making masks for use in semiconductor fabrication by electron beam lithography and electron beam direct writing of patterns onto wafers to form semiconductor devices.
Lithography systems generate or expose patterns by controlling the flow of energy (the beam) from a source to a substrate coated with a layer sensitive to that form of energy. Pattern exposure is controlled and broken into discrete units commonly referred to as flashes, wherein a flash is that portion of the pattern exposed during one cycle of an exposure sequence. Flashes are produced by allowing energy from the source, for example light, electron or other particle beams, to reach the coated substrate within selected pattern areas. The details of flash composition, dose and exposure sequence used to produce a pattern, and hence the control of the lithographic system, make up what is known as a writing strategy.
A traditional raster scan writing strategy employs a uniform periodic raster scan, somewhat similar to television raster scanning. A mechanical stage moves a substrate, for example placed on a table, uniformly in a direction orthogonal to the direction of the uniform scan of an energy beam. In this manner a pattern is composed on a regular grid with a regular scan trajectory resulting from the orthogonal movement of the stage and beam. When the beam is positioned over a grid site requiring exposure, the beam is unblanked and the underlying site exposed. Only the amount of dose, or energy, at each site is varied as required. Hence, exposure data can be organized in a time sequence corresponding to the regular scan trajectory, and only the dose for each site need be specified. The distinguishing characteristics of a traditional raster scan writing strategy are a small round beam exposing one site at a time, a periodic scan moving sequentially to each site of a grid and a rasterized representation of data corresponding to the required dose for each site or “pixel” of the grid.
On the other hand, in a typical vector scan writing strategy, the beam is positioned only over those sites that require exposure and then unblanked to expose the site. Positioning is accomplished by a combination of stage and beam movement in what is often referred to as a semi-random scan. Thus, data must be provided that includes both the dose and position of each flash or site exposed. Frequently vector scan strategies use a variable shaped beam, that is a beam capable of having a different size and/or shape for each flash. The pattern is then composed from these variable shapes. A shaped beam is capable of exposing multiple pixel sites simultaneously instead of one pixel site at a time as in a raster scan writing strategy. Where a variable shaped beam is used, the data must additionally include the location, size and shape for each flash. Thus the distinguishing characteristics of traditional vector scan writing strategies are a variable shaped and sized beam exposing multiple pixel sites in a single flash, a semi-random scan encompassing only those portions of a pattern to be exposed, and a vectorized representation of data including the location, size, shape and dose of each flash.
Both vector and raster scan writing strategies have advantages and disadvantages. Vector scan strategies can offer fine pattern definition. However, vector scan flash rates are typically slower than raster scan strategies due to settling time required between the relatively large beam deflections of the semi-random scan trajectory. For patterns with exposed portions that are finely detailed, vector scan strategies are relatively slower due to delays in settling of the electron beam shaping components which are capable of shaping the beam over a wide range of dimensions. Also, current density (current per unit area) is generally lower in vector scan strategies due to the need for the electron source to be capable of covering larger areas simultaneously, again leading to lower throughput. A drawback of raster scan writing processes is a relatively coarse pattern definition.
Thus it is desirable to develop an improved writing strategy that combines the advantages of a vector scan strategy, namely, fine pattern definition, with those of a raster scan strategy, namely, increased speed, to increase the throughput of pattern generation systems.
SUMMARY
An embodiment of the present invention provides a converter which generates signals to control a shaping of an energy beam that strikes a substrate, the converter including: a translator which translates received input shape data into shape and position signals, and translates input duration information into a duration signal, where the shape signals control the shaping of the beam, the position signal specifies a position of the beam on the substrate, and the duration signal specifies a duration of exposure of the beam on the substrate; a retrograde scan circuit that outputs a retrograde signal; an output circuit coupled to receive the shape signals, the retrograde signal, and the position signal, where the output circuit adjusts the position signal according to the retrograde signal and outputs the shape and adjusted position signals; and timer circuit coupled to receive the duration signal from the translator circuit, where the timer circuit controls a duration the output circuit outputs the shape signal.
An embodiment of the present invention provides a method of generating signals that control a shaping of an electron (or other energy) beam that strikes a substrate, the method including the acts of: receiving data defining the shape of the beam; translating the shape data into shape and position signals; translating duration information pertaining to the beam into a duration signal, where the shape signals control the shape of the beam, the position signal specifies a position of the beam on the substrate being written by the beam, and the duration signal specifies a duration of exposure of the beam on the substrate; providing a retrograde signal with the position signal that offsets a raster scan movement of the beam; and outputting the shape signals based on the duration signal.
The present invention will be more fully understood in light of the following detailed description taken together with the accompanying drawings.
REFERENCES:
patent: 3573849 (1971-04-01), Herriot et al.
patent: 3900737 (1975-08-01), Collier et al.
patent: 4213053 (1980-07-01), Pfeiffer
patent: 4243866 (1981-01-01), Pfeiffer et al.
patent: 4469950 (1984-09-01), Taylor et al.
patent: 4698509 (1987-10-01), Wells et al.
patent: 4806921 (1989-02-01), Goodman et al.
patent: 4879605 (1989-11-01), Warkentin et al.
patent: 5393987 (1995-02-01), Abboud et al.
patent: 5847959 (1998-12-01), Veneklasen et al.
patent: 5876902 (1999-03-01), Veneklasen et al.
patent: 6011269 (2000-01-01), Veneklasen et al.
patent: 219446 (1982-07-01), None
patent: 221592 (1982-08-01), None
patent: 0166549 A2 (1986-01-01), None
patent: WO 94/28574 (1994-12-01), None
patent: WO 98/33198 (1998-07-01), None
“On The Throughput Optimization Of Electron Beam Lithography Systems”, Elvira Hendrika Mulder, Natuurkundig ingenieur geboren te's-Gravenhage, Jun. 13, 1991, te 14.00 pp. 3-6, 3-7.
“Proximity Correction on The EBLE-150,” J. Vac. Sci. Technol. B6(1),, Jan./Feb. 1988 pp. 443-447.
The Reporter of the Institute of Scientific Instrument, “The electron Lithography tool BS 600 and its technology applications.”
Boegli Volker
Rishton Stephen A.
Veneklasen Lee H.
Etec Systems, Inc.
Nguyen Kiet T.
Skjerven, Morrill, Macpherson, Franklin & Friel
LandOfFree
Apparatus and method for controlling a beam shape does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method for controlling a beam shape, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for controlling a beam shape will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2506884