Drug – bio-affecting and body treating compositions – Anti-perspirants or perspiration deodorants
Reexamination Certificate
2002-06-18
2004-03-30
Dodson, Shelley A. (Department: 1616)
Drug, bio-affecting and body treating compositions
Anti-perspirants or perspiration deodorants
C424S066000, C424S068000, C424S400000, C424S401000
Reexamination Certificate
active
06713051
ABSTRACT:
The invention relates to antiperspirant compositions intended for topical application to human skin. In particular, it relates to antiperspirant compositions comprising an agent that is capable of ameliorating or controlling skin irritancy.
BACKGROUND
In many countries, civilised behaviour encourages people to take steps to prevent or control body odours or visible wet patches caused by sweating, particularly in the underarm or on clothing in the vicinity of the underarm. People in some countries prefer to control both sweat and odour, whereas in other countries control of odour alone is favoured.
The antiperspirant market is currently dominated by topically applied products based on aluminium or zirconium salts which are intended to prevent, or at least control, localised perspiration at the skin surface, particularly on the underarm. Such formulations can often simultaneously provide a perceived degree of deodorancy.
Deodorants are formulations that are designed either to mask malodour or to prevent or hinder its formation. The latter method usually comprises reducing and/or controlling the re-growth of the local micro-organism populations, or targeting preferentially those bacteria such as a sub-class of Coryne bacteria which contribute disproportionately to axillary odour generation, or interrupting the pathways by which malodours are formed from secretions. Aluminium or zirconium salts provide deodorancy benefits even at a level below the commonly accepted threshold for significant antiperspirancy to be observed.
Antiperspirant formulations are utilised in many applicator forms e.g. roll-ons, creams or soft solids, gels, firm sticks, aerosols and pump sprays. However all forms can suffer from a number of common disadvantages.
A principal disadvantage of many antiperspirants is that they contain one or more commonly employed ingredients which are perceptably unfriendly to human skin in those areas of the body to which the formulations are normally applied. Such ingredients include in particular the above-mentioned aluminium and zirconium salts, and the effect from those salts can be exacerbated by other ingredients that are usually employed because they demonstrate other attributes which are advantageous or otherwise render the formulation particularly effective. Such essential or otherwise highly desirable or desirable ingredients in aluminium or zirconium salt containing compositions include liquid carriers such as volatile silicones and ethanol, as well as a host of other ingredients commonly employed in such formulations such as fragrance ingredients and emulsifiers. Such ingredients are perceived to exhibit an adverse effect, in particular an irritant effect, on a user's skin following application of the antiperspirant salt-containing formulation.
Skin unfriendliness can be tolerated, at least up to a certain extent which will vary from user to user, but it would be advantageous to identify means of reducing or eliminating the effect. Manifestly, irritation can be ameliorated by lowering the amount of the offending active ingredient in the formulation but a serious drawback of such an approach is that the efficacy of the ingredient is impaired.
It would be desirable to be able to create antiperspirant formulations which were effective and which do not irritate skin, and particularly desirable to provide formulations with a positive skin care benefit too.
It would be desirable to be able to devise antiperspirant formulations which continued to be effective for their primary purpose, that is to say continued to employ known antiperspirant actives displaying the same or similar activity levels, but in which adverse localised skin effects were ameliorated or overcome, and localised skin condition can be improved. The achievement of these outcomes at the same time requires the identification of materials which are not only effective for the secondary purpose but which are not unduly antagonistic towards the constituents which are incorporated to provide or deliver the antiperspirant active, and particularly to avoid or minimise interactions between said materials and said constituents during transportation and storage of formulations containing them.
Various patent specifications have disclosed the incorporation of emollients in antiperspirant formulations.
Many different classes of materials are contemplated within, or U.S. Pat. No. 5,254,332 or WO 00/28956. Emollients are usually regarded as constituents which are non-irritating and at least some of which can soften skin. However, there is no teaching that emollients as a class of materials act as PPAR activating agents, nor any teaching as to how to identify the limited number of emollients which by chance are named and which may be capable of so acting from the preponderant majority of emollients which are named and not capable of so acting.
Similarly, several patent specifications such as WO 98/58625 disclose formulations which are gelled with various gellants, without discussing whether or not they are capable of acting as PPAR activating agents, or indicating how to identify which, if any, of the gellants may be capable of acting as PPAR activating agents in amounts which are less than is required to gel the composition in which it is present, and which are not so capable.
Peroxisome proliferator-activated receptors (abbreviated herein to PPAR) are transcription factors that control lipid metabolism. There are three isotypes PPAR&agr;, PPAR&bgr;/&dgr; and PPAR&ggr;, all of which have been localised in the skin according to Riviers et al, in J. Invest. Dermatol. 111, 1116-1121 (1998). A range of specific fatty acids activates these factors, resulting in anti-inflammatory action, to reduce cutaneous irritation responses, and pro-differentiation/anti-proliferation responses to normalise skin metabolism and provide additional skin-care benefits. In U.S. Pat. No. 5,981,586 Pershadsingh teaches that PPAR ligands can reduce proliferation and inflammation in the skin. In PCT application WO-A-98/32444 Elias et al teaches that PPAR ligands can restore/prevent skin barrier dysfunction. In EP-A-888773 Malnoe et al describes the use of the PPAR activating lipid petroselinic acid in the treatment and prevention of inflammation in superficial tissues. Furthermore, in PCT application WO-A-99/47110, Alaluf et al teach the use of petroselinic acid or glycerides thereof to reduce skin irritation in a treatment for skin intended simultaneously to combat ageing and wrinkling, and also to provide skin lightening properties. In EP-A-709084, Laugier et al describes the use of coriander oil, rich in petroselinic acid, in a skin cosmetic composition for the moisturisation of dry skin. In U.S. Pat. No. 5,260,053, Chappell et al describe deodorant formulations containing inter alia coriander oil, to accomplish odour reduction, by reducing the population of both micrococci and diphtheroids and to mask any lingering androsterone compounds. In DE-A-19883808114, by Grillo Werke et al, there is described a deodorant for domestic, hygiene and industrial use which contains a zinc salt of ricinoleic acid and/or salts of other (un)saturated OH fatty acids with at least 17C. Similarly, deodorising compositions containing zinc ricinoleate are described in FR-A-2311529 to Dart Industries Inc. None of these specifications provide specific teaching in relation to antiperspirant formulations.
In PCT application WO-A-99/26597 (Parrott) teaches that borage oil can be included in an antiperspirant formulation to reduce irritation without reducing the antiperspirant activity, but Parrott does not teach how to locate alternative or improved solutions to the problem, nor how to improve general skin condition.
Although the art does teach the use of a few named emollients in certain skin-care products, research continues in the field to locate alternative or improved systems. The effect of each ingredient of a formulation should not be considered by itself. Its interaction with other ingredients should also be considered to obtain an overall picture. For examp
Mayes Andrew Easson
Rawlings Anthony Vincent
Watkinson Allan
Dodson Shelley A.
Stein Kevin J.
Unilever Home & Personal Care USA , division of Conopco, Inc.
LandOfFree
Antiperspirant or deodorant compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Antiperspirant or deodorant compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antiperspirant or deodorant compositions will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3189908