Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...
Reexamination Certificate
2005-07-19
2008-12-02
Yaen, Christopher H (Department: 1643)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
Blood proteins or globulins, e.g., proteoglycans, platelet...
Reexamination Certificate
active
07459537
ABSTRACT:
This invention relates to compositions and methods useful for activating LT-β receptor signaling, which in turn elicits potent anti-proliferative effects on tumor cells. More particularly, this invention relates to lymphotoxin heteromeric complexes formed between lymphotoxin-α and multiple subunits of lymphotoxin-β, which induce cytotoxic effects on tumor cells in the presence of lymphotoxin-β receptor activating agents. Also within the scope of this invention are antibodies directed against the lymphotoxin-β receptor which act as lymphotoxin-β receptor activating agents alone or in combination with other lymphotoxin-β receptor activating agents either in the presence or absence of lymphotoxin-α/β complexes. A screening method for selecting such antibodies is provided. This invention also relates to compositions and methods using cross-linked anti-lymphotoxin-β receptor antibodies either alone or in the presence of other lymphotoxin-β receptor activating agents to potentiate tumor cell cytotoxicity.
REFERENCES:
patent: 6312691 (2001-06-01), Browning et al.
patent: 7001598 (2006-02-01), Browning et al.
patent: 2004/0058394 (2004-03-01), Garber et al.
patent: 2005/0281811 (2005-12-01), Browning et al.
patent: 2006/0104971 (2006-05-01), Garber et al.
patent: 2006/0134102 (2006-06-01), LePage et al.
patent: 2006/0222644 (2006-10-01), Garber et al.
patent: 2007/0154476 (2007-07-01), Browning et al.
patent: WO-92/00329 (1992-01-01), None
patent: WO-94/13808 (1994-06-01), None
patent: WO-2007/146414 (2007-12-01), None
Rudikoff et al (Proc Natl Acad Sci USA 1982 vol. 79 p. 1979).
Alderson, Mark R., 1994, International Immunology, 6:1799-1806, “Regulation of Apoptosis and T cell activation by Fas-specific mAb”.
Androlewicz, Matthew, J. of Biological Chem., 1992, 267:2542-2547, “Lymphotoxin Is Expressed as a Heteromeric Complex with a Distinct 33-kDa Glycoprotein on the surface of an Activated Human T Cell Hybridoma”.
Arulanandam, Antonio, R., 1993, J. Exp. Med., 177:1439-1450, “A Soluble Multimeric Recombinant CD2 Protein Identifies CD48 as a Low Affinity Ligand for Human CD2: Divergence of CD2 Ligands during the Evolution of Humans and Mice”.
Bernstein, David, 1993, Antiviral Research, 20:45-55, “Effects of therapy with an immunomodulator (imiquirnod, R-837) along and with acyclovir on genital HSV-2 infection in guinea-pigs when begun after lesion development”.
Browning, Jeffrey, Androlewicz, Matthew et al., 1991, J. of Immunology, 147:1230-1237, “Lymphotoxin and an Associated 33-kDa Glycoprotein Are Expressed on the Surface of an Activated Human T Cell Hybridoma”.
Browning, Jeffrey and Douglas, Irene et al., 1995, J. of Immunology, 154:33-46, “Use of Specific Monoclonal Antibodies and Soluble Receptors”.
Browning, Jeffrey and Ngam-ek, Apinya et al., 1993, Cell, 72:847-856, “Lymphotoxin Beta, a Novel Member of the TNGF Family that Forms a Heteromeric Complex with Lymphotoxin on the Cell Surface”.
Browning, Jeffrey and Ribolini, Ann, 1989, J. of Immunol., 143:1859-1867, “Studies on the Differing Effects of Tumor Necrosis Factor and Lymphotoxin on the Growth of Several Human Tumor Lines”.
Crowne, Paul, VanArsdale, Todd, et al., 1994, J. of Immunol. Methods, 168:79-89, “Production of lymphotoxin (LTalpha) and a Soluble dimeric form of its receptor using the baculovirus expression system”.
Browning, J. et al. The 9thInternational Congress of Immunology, San Francisco, Jul. 23-29, 1995, Signalling through the lymphotoxin-beta receptor in conjunction with interferon-gamma induces the death of a human tumor line.
Crowne, Paul, VanArsdale, Todd et al., 1994, Science, 264:707-710, “A Lymphotoxin Beta Specific Receptor”.
Dhein, Jenset al., 1992, J. of Immunol., 149:3166-3173, “Induction of Apoptosis By Monoclonal Antibody Anti-APO-1 Class Switch Variants Is Dependent On Cross-Linking of APO-1 Cell Surface Antigens”.
Dighe, Anand et al., 1994, Immunity, 1:447-456, “Enhanced In Vivo Growth and Resistance to Rejectionof Tumor Cells Expressing Dominant Negative IFNy Receptors”.
Duzgunes, Nejat et al., 1992, J. of Cell Biochem., 16E:77, “Liposome Targeting To HIV-Infected Cells Via Recombinant Soluble CD4 and CD4-IgG”.
Eppstein, Deborah, 1985, Proc natl Acad. Sci., 82:3688-3692, “Biological activity of liposome-encapsulated murine interferon y is mediated by a cell membrane receptor”.
Fukushima, Keiko et al., 1993, Arch. Biochem. Biophys., 304:144-153, “N- Linked Sugar Chain Structure of Recombinant Human Lymphotoxin Produced by CHO Cells: The Functional Role of Carbohydrate as to Its Lectin-like Character and Clearacne Velocity”.
Havell, Edward et al., 1988, J. Exp. Med., 167:1067-1085, “The Anittumor Function of Tumor Necrosis Factor(TNF)”.
Hwang et al., 1980, Pro. Natl. Acad. Sci., 77:4030-4034, “Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: A kinetic study”.
Johne, Bert et al., 1993, J. Immun.Methods, 160:191-198, “Epitope mapping and binding kinetics of monoclonal antibodies studied by real time biospecific interaction . . . ”.
Juraskova, Vera et al., 1992, Eur. J. Pharmacol., 221:107-111, “Interferon inducer, polyribogunanylic polyribocytidylic acid, inhibits experimental hepatic metastases in mice”.
Kawabe, Tsutomu et al., 1994, Immunity, 1:167-178, “The Immune Responses in CD40-Deficient Mice: Impaired Immunoglobullin Class . . . ”.
Kolanus, Waldemar et al., 1993, Cell, 74:171-183, “T Cell Activation by Clustered Tyrosine Kinases”.
Kopp, William C. et al., 1993, J. of Immunother., 13:181-190, “Immunomodulatory Effects of Interferon-y in Patients with Metastatic Malignant Melanoma”.
Lane, Peter et al., 1992, Eur. J. Immunol., 22:2573-2578, “Activated human T cells express a ligand for the human B cell-associated antigen CD- 40 which participates in T cell-dependent activationof B lymphocytes”.
Langer, Robert, 1982, Chemtech. 12:98-105, “Controlled release of macromolecules”.
Langer, Robert, Brem, Henry et al., 1981, J. of Blomed. Materials, 15:267-277, “Biocompatibility of polymeric delivery systems for macromolecules”.
Ling, Leona et al., 1995, J. of Interferon and Cytokine Res., 15:53-59, “Human Type I Interferon Receptor, IFNAR, Is A Heavily Glycosylated 120-130 kD Membrane Protein”.
Loetshcer, Hansruedi et al., 1991, J. of Biolog. Chem., 266:18324-18329, “Recombinant 55-kDa Tumor Necrosis Factor (TNGF) Receptor”.
Morrison, Sherle et al., 1984, Pro. Natl. Acad. Sci., 81:6851-6855, “Chimeric human antibody molecules: Mouse antigen-binding domains . . . ”.
Niederle, Norbert et al., 1993, Leuk. Lymphoma, 9:111-119, “Long-Term Treatment of Chronic Myaelogenous Leukemia with Different Interferons: Results from Three Studies”.
Onishi, Tetsuro et al., 1994, Acta. Urol. Jpn., 40:195-200, “A Study On Direct Antitumor Activity of Bropirimine (Oral Interferon Inducer) For Renal Cell Carcinoma”.
Pleskov, V.M. et al., 1994, pp. 125-128, “Receptor-Mediated Endocytosis of Influenza Viruese and Low Density Lipoproteins by Tissue Cells”.
Queen, Cary et al., 1989, Proc. Natl. Acad. Sci., 86:10029-10033, “A Humanized antibody that binds to the interleukin 2 receptor”.
Raitano, Arthur B. et al., 1990, J. of Biol. Chem., 265:10466-10472, “Tumor Necrosis Factor Up-Regulates y-Interferon Binding in a Human Carcinoma Cell Line”.
Schiller, Joan et al., 1991, Cancer Research, 51:1651-1658, “Biological and Clinical Effects of Intravenous Tumor Necrosis Factor-alpha Administered Three Times Weekly”.
Schoenfeld, Hans-Joachim et al., 1991, J. of Biol. Chem., 266:3863-3869, “Efficient Purificationof Recombinant Human Tumor Necrosis Facotr Beta
Benjamin Christopher D.
Browning Jeffrey L.
Meier Werner
Biogen Idec MA Inc.
Cowles Cristin Howley
Lahive & Cockfield LLP
Mandragouras Esq. Amy E.
Yaen Christopher H
LandOfFree
Anti-lymphotoxin-β receptor antibodies as anti-tumor... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Anti-lymphotoxin-β receptor antibodies as anti-tumor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anti-lymphotoxin-β receptor antibodies as anti-tumor... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4051973