Analyzing method and apparatus for minute foreign...

Semiconductor device manufacturing: process – With measuring or testing – Optical characteristic sensed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S018000, C438S706000, C250S234000, C250S306000, C250S307000, C250S310000

Reexamination Certificate

active

06255127

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an analyzing method for analyzing minute foreign substances existing on the surface of a planar sample such as a silicon wafer for use in manufacture of a semiconductor device, an insulative transparent substrate for use in manufacture of a liquid crystal display device, etc., an analyzing apparatus therefor, and a manufacturing method for manufacturing a semiconductor device or liquid crystal display device by using the analyzing method and analyzing apparatus. More particularly, the invention relates to a method and apparatus for, concerning a minute foreign substance having beedetected and having had its position particularized by a particle examination equipment whose equipment coordinates are defined beforehand, enabling easy analysis, examination and evaluation of the particularized minute foreign substance by linking the particularized existing position of the minute foreign substance with the coordinates of an analyzing apparatus, and a manufacturing method for manufacturing a semiconductor device and liquid crystal display device by using these method and apparatus.
Note the following. The analyzing apparatus referred to here in this specification is defined to mean an analyzing apparatus which irradiates energy of various corpuscular rays such as light, x rays, electromagnetic waves, electrons, neutral chemical species (atoms, molecules, etc.), ions or phonons onto the surface of a sample and detects secondary corpuscular rays absorbed or radiated due to interaction thereof with the sample to thereby examine the color tone, cubic image, elemental analysis, chemical structure, crystalline structure and the like of the surface of the sample or process this sample surface. For example, it includes apparatuses having the analyzing, examining, evaluating, and/or processing function such as, for example, metallurgical microscopes, laser microscopes, probe microscopes, interatomic force microscopes (hereinafter referred to as “AFM”), scanning tunnel microscopes (hereinafter referred to as “STM”), magnetic force microscopes (hereinafter referred to as “MFM”), scanning electron microscopes (Scanning Electron Microscope, hereinafter referred to as “SEM”), electron probe micro-analyzers (Electron Probe Micro-Analyzers, hereinafter referred to as “EPMA”), x-ray photoelectron spectrometers (X-ray Photoelectron Spectrometer, hereinafter referred to as “XPS”), ultraviolet photoelectron spectrometers (Ultraviolet Photoelectron Spectrometer, hereinafter referred to as “UPS”), secondary ion mass spectrometers (Secondary Ion Mass Spectrometer, hereinafter referred to as “SIMS”), time of flight-SIMSes (Time Of Flight-SIMS, hereinafter referred to as “TOF-SIMS”), scanning Auger electron spectrometers (Scanning Auger Electron Spectrometer, hereinafter referred to as “SAM”), Auger electron spectrometers (Auger Electron Spectrometer, hereinafter referred to as “AES”), reflection high energy electron diffraction spectrometers (Reflection High Energy Electron Diffraction Spectrometer, hereinafter referred to as “RHEED”), high energy electron diffraction spectrometers (High Energy Electron Diffraction Spectrometer, hereinafter referred to as “HEED”), low energy electron diffraction spectrometers (Low Energy Electron Diffraction Spectrometer, hereinafter referred to as “LEED”), electron energy-loss spectrometers (Electron Energy-Loss Spectrometer, hereinafter referred to as “EELS”), focused ion beam instruments (Focused Ion Beam Instruments, hereinafter referred to as “FIB”), particle induced X-ray emission spectrometers (Particle Induced X-Ray Emission, hereinafter referred to as “PIXE”), Microscopic Fourier transformation infrared-ray spectrometers (hereinafter referred to as “Microscopic FT-IR”) or Microscopic Raman, observation apparatuses, analyzing apparatuses, examination apparatuses and evaluation apparatuses, having the above-mentioned functions.
It is said that inferior yield in the manufacture of ultrahigh LSIs represented by 4 M bit-DRAMs, 16 M bit-DRAMs and the like is for the most part attributable to defective wafers resulting from attachments on wafers.
The reason for this is that as the pattern width becomes micronized, a micro-size of foreign substances attached on wafers, which were conventionally not deemed as problematic, become contamination sources in preceding manufacturing process steps. Generally, it is said that the size of these problematic minute foreign substances is one of several of a minimum wiring width of an ultrahigh LSI to be manufactured. For this reason, in a 16 M bit-DRAM (minimum wiring width: 0.5 &mgr;m), minute foreign substances having a diameter of 0.1 &mgr;m or so are object foreign substances. These minute foreign substances become contamination substances which cause wiring breakage and shortcircuiting of the circuit patterns, which in turn largely causes generation of defective products and causes a decrease in the quality and reliability. Therefore, grasping the actual condition of minute foreign substances such as a state of attachment thereof through quantitative and precise measurement and analysis and conducting relevant managements are a key to increasing the yield.
As means for conducting the above-mentioned grasp and management, there is conventionally employed a particle examination equipment capable of detecting the positions of minute foreign substances existing on the surface of a planar sample such as a silicon wafer. Note that as the conventional particle examination equipments there are one produced by Hitachi Electron Engineering Limited and having an equipment name of IS-2000 and LS-6000, one produced by Tencor Corporation in the United States of America and having an equipment name of Surfscan 6200, one produced by Estek Corporation in the United States of America and having an equipment name of WIS-9000, and the like. Also, the measuring principles used in these particle examination equipments and the equipment constructions for realizing them are described in detail in, for example, a literature “High Performance Semiconductor Process Analysis and Evaluation Technology”, pages 111 to 129, edited by Semiconductor Foundation Technology Study Association and published by Realize Ltd.
FIG. 9
illustrates a CRT display image screen which shows the results of measurements made on minute foreign substances (0.1 &mgr;m or more) existing on an actual 6-inch silicon wafer by using the particle examination equipment LS-6000. Namely, this display image screen only shows rough positions of minute foreign substances, the number thereof per unit size thereof and particle size distribution thereof. The circle shown in
FIG. 9
indicates the outer periphery of the 6-inch silicon wafer and the dots existing therewithin correspond to the positions where minute foreign substances exist. Note that the particles and foreign substances described here are defined to mean foreign or different portions as viewed with respect to a wafer, such as protrusions, depressions, attaching particles, defects and the like, namely foreign or different portions at which light scattering (irregular reflection) occurs.
However, as seen from
FIG. 9
, since data obtained from conventional particle examination equipments are only the sizes of minute foreign substances existing on the surface of a sample such as a silicon wafer and the existence positions thereof on the sample surface, the actual condition of such minute foreign substances such as what these substances are cannot be particularized.
For example,
FIG. 5
is a view illustrating a fundamental construction of a conventional actuator-equipped metallurgical microscope such as an IC examination microscope apparatus MODER: IM-120 put on sale from Nidek Co.Ltd., which is an example of a metallurgical microscope having the positioning function used for detecting minute foreign substances. In
FIG. 5
, a silicon wafer
2
as a sample is placed on an x-y actuator
1
having coordinates which have been roughly linked with the coordinates of a particle exa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Analyzing method and apparatus for minute foreign... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Analyzing method and apparatus for minute foreign..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Analyzing method and apparatus for minute foreign... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453213

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.