Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2002-01-14
2002-12-17
Davis, Zinna Northington (Department: 1625)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S255060, C514S332000, C514S336000, C514S342000, C514S617000, C544S336000, C546S263000, C546S280100, C546S283400, C546S309000, C564S185000
Reexamination Certificate
active
06495576
ABSTRACT:
TECHNICAL FIELD
Novel aminal dione compounds and their derivatives can open potassium channels and are useful for treating a variety of medical conditions.
BACKGROUND OF INVENTION
Potassium channels play an important role in regulating cell membrane excitability. When the potassium channels open, changes in the electrical potential across the cell membrane occur and result in a more polarized state. A number of diseases or conditions may be treated with therapeutic agents that open potassium channels; see for example (Lawson, Pharmacol. Ther., v. 70, pp. 39-63 (1996)); (Gehlert et al., Prog. Neuro-Psychopharmacol & Biol. Psychiat., v. 18, pp. 1093-1102 (1994)); (Gopalakrishnan et al., Drug Development Research, v. 28, pp. 95-127 (1993)); (Freedman et al., The Neuroscientist, v. 2, pp. 145-152 (1996)); (Nurse et al., Br. J. Urol., v. 68 pp. 27-31 (1991)), (Howe et al., J. Pharmacol. Exp. Ther., v. 274 pp. 884-890 (1995)); (Spanswick et al.; Nature, v. 390 pp. 521-25 (Dec. 4, 1997)); (Dompeling Vasa. Supplementum (1992) 3434); (WO9932495); (Grover, J Mol Cell Cardiol. (2000) 32, 677), and (Buchheit, Pulmonary Pharmacology & Therapeutics (1999) 12, 103). Such diseases or conditions include asthma, epilepsy, male sexual dysfunction, female sexual dysfunction, pain, bladder overactivity, stroke, diseases associated with decreased skeletal blood flow such as Raynaud's phenomenon and intermittent claudication, eating disorders, functional bowel disorders, neurodegeneration, benign prostatic hyperplasia (BPH), dysmenorrhea, premature labor, alopecia, cardioprotection, coronary artery disease, angina and ischemia.
Bladder overactivity is a condition associated with the spontaneous, uncontrolled contractions of the bladder smooth muscle. Bladder overactivity thus is associated with sensations of urgency, urinary incontinence, pollakiuria, bladder instability, nocturia, bladder hyerreflexia, and enuresis (Resnick, The Lancet (1995) 346, 94-99; Hampel, Urology (1997) 50 (Suppl 6A), 4-14; Bosch, BJU International (1999) 83 (Suppl 2), 7-9Potassium channel openers (KCOs) act as smooth muscle relaxants. Because bladder overactivity and urinary incontinence can result from the spontaneous, uncontrolled contractions of the smooth muscle of the bladder, the ability of potassium channel openers to hyperpolarize bladder cells and relax bladder smooth muscle may provide a method to ameliorate or prevent bladder overactivity, pollakiuria, bladder instability, nocturia, bladder hyperreflexia, urinary incontinence, and enuresis (Andersson, Urology (1997) 50 (Suppl 6A), 74-84; Lawson, Pharmacol. Ther., (1996) 70, 3963; Nurse., Br. J. Urol., (1991) 68, 27-31; Howe, J. Pharmacol. Exp. Ther., (1995)274, 884-890; Gopalakishnan, Drug Development Research, (1993) 28, 95-127).
The irritative symptoms of BPH (urgency, frequency, nocturia and urge incontinence) have been shown to be correlated to bladder instability (Pandita, The J. of Urology (1999) 162, 943). Therefore the ability of potassium channel openers to hyperpolarize bladder cells and relax bladder smooth muscle may provide a method to ameliorate or prevent the symptoms associated with BPH. (Andersson, Prostate (1997) 30: 202-215).
The excitability of corpus cavernosum smooth muscle cells is important in the male erectile process. The relaxation of corporal smooth muscle cells allows arterial blood to build up under pressure in the erectile tissue of the penis leading to erection (Andersson, Pharmacological Reviews (1993) 45, 253). Potassium channels play a significant role in modulating human corporal smooth muscle tone, and thus, erectile capacity. By patch clamp technique, potassium channels have been characterized in human corporal smooth muscle cells (Lee, Int. J. Impot. Res. (1999) 11(4),179-188). Potassium channel openers are smooth muscle relaxants and have been shown to relax corpus cavernosal smooth muscle and induce erections (Andersson, Pharmacological Reviews (1993) 45, 253; Lawson, Pharmacol. Ther., (1996) 70, 39-63, Vick, J. Urol. (2000) 163: 202). Potassium channel openers therefore may have utility in the treatment of male sexual dysfunctions such as male erectile dysfunction, impotence and premature ejaculation.
The sexual response in women is classified into four stages: excitement, plateau, orgasm and resolution. Sexual arousal and excitement increase blood flow to the genital area, and lubrication of the vagina as a result of plasma transudation. Topical application of KCOs like minoxidil and nicorandil have been shown to increase clitoral blood flow (Kim, et al., J. Urol. (2000) 163 (4): 240). KCOs may be effective for the treatment of female sexual dysfunction including clitoral erectile insufficiency, vaginismus and vaginal engorgement (Goldstein and Berman., Int. J. Impotence Res. (1998) 10:S
84-S
90), as KCOs can increase blood flow to female sexual organs.
Potassium channel openers may have utility as tocolytic agents to inhibit uterine Contractions to delay or prevent premature parturition in individuals or to slow or arrest delivery for brief periods to undertake other therapeutic measures (Sanborn, Semin. Perinatol. (1995) 19, 31-40, Morrison, Am. J. Obstet. Gynecol. (1993) 169(5), 1277-85). Potassium channel openers also inhibit contractile responses of human uterus and intrauterine vasculature. This combined effect would suggest the potential use of KCOs for dysmenhorrea (Kostrzewska, Acta Obstet. Gynecol. Scand. (1996) 75(10), 886-91). Potassium channel openers relax uterine smooth muscle and intrauterine vasculature and therefore may have utility in the treatment of premature labor and dysmenorrhoea (Lawson, Pharmacol. Ther., (1996) 70, 39-63).
Potassium channel openers relax gastrointestinal smooth tissues and therefore may be useful in the treatment of functional bowel disorders such as irritable bowel syndrome (Lawson, Pharmacol. Ther., (1996) 70, 39-63).
Potassium channel openers relax airway smooth muscle and induce bronchodilation. Therefore potassium channel openers may be useful in the treatment of asthma and airways hyperreactivity (Lawson, Pharmacol. Ther., (1996) 70, 39-63; Buchheit, Pulmonary Pharmacology & Therapeutics (1999) 12, 103; Gopalakrishnan, Drug Development Research, (1993) 28, 95-127).
Neuronal hyperpolarization can produce analgesic effects. The opening of potassium channels by potassium channel openers and resultant hyperpolarization in the membrane of target neurons is a key mechanism in the effect of opioids. The peripheral antinociceptive effect of morphine results from activation of ATP-sensitive potassium channels, which causes hyperpolarization of peripheral terminals of primary afferents, leading to a decrease in action potential generation (Rodrigues, Br. J. Pharmacol. (2000) 129(1), 11-04). Opening of K
ATP
channels by potassium channel openers plays an important role in the antinociception mediated by alpha-2 adrenoceptors and mu opioid receptors. KCOs can potentiate the analgesic action of both morphine and dexmedetomidine via an activation of K
ATP
channels at the spinal cord level (Vergoni, Life Sci. (1992) 50(16), PL135-8; Asano, Anesth. Analg. (2000) 90(5), 1146-51). Thus, potassium channel openers can hyperpolarize neuronal cells and have shown analgesic effects. Potassium channel openers therefore may be usefull as analgesics in the treatment of various pain states including but not limited to migraine and dyspareunia (Lawson, Pharmacol. Ther., (1996) 70, 39-63; Gopalakrishnan, Drug Development Research, (1993) 28, 95-127; Gehlert, Prog. Neuro-Psychopharmacol. & Biol. Psychiat., (1994) 18, 1093-1102).
Epilepsy results from the propagation of nonphysiologic electrical impulses. Potassium channel openers hyperpolanize neuronal cells and lead to a decrease in cellular excitability and have demonstrated antiepileptic effects. Therefore potassium channel openers may be useful in the treatment of epilepsy (Lawson, Pharmacol. Ther., (1996) 70, 39-63; Gopalakrishnan, Drug Development Research, (1993) 28, 95-127, Gehlert, Prog. Neuro-Psychopharmacol. & Biol. Psychiat, (1994)
Basha Fatima Z.
Carroll William A.
Dinges Jürgen
Gregg Robert J.
Kort Michael E.
Abbott Laboratories
Davis Zinna Northington
Ward Michael J.
LandOfFree
Aminal diones as potassium channel openers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Aminal diones as potassium channel openers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Aminal diones as potassium channel openers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2949047