Paper making and fiber liberation – Processes and products – Non-fiber additive
Reexamination Certificate
1999-11-08
2001-12-04
Brunsman, David (Department: 1755)
Paper making and fiber liberation
Processes and products
Non-fiber additive
C162S179000, C106S287210, C428S537500
Reexamination Certificate
active
06325893
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to paper sizing agents that have reactive functional groups that covalently bond to cellulose fiber, and hydrophobic tails that are oriented away from the fiber, to paper surface sizing methods using such paper sizes and to surface sized paper.
BACKGROUND OF THE INVENTION
The amount of fine paper produced under alkaline conditions has been increasing rapidly, encouraged by cost savings, the ability to use precipitated calcium carbonate (PCC), and increased demand for improved paper permanence and brightness, and an increased tendency to close the wet-end of the paper machine.
Current applications for fine paper require particular attention to sizing before conversion or end-use, such as high-speed photocopies, envelopes, forms bond including computer printer paper, and adding machine paper. The most common sizing agents for fine paper made under alkaline conditions are alkenyl succinic anhydride (ASA) and alkyl ketene dimer (AKD). Both types of sizing agents have a reactive functional group that covalently bonds to cellulose fiber and hydrophobic tails that are oriented away from the fiber. The nature and orientation of these hydrophobic tails cause the fiber to repel water.
Commercial ASA-based sizing agents may be prepared by the reaction of maleic anhydride with an olefin (C
14
-C
18
).
Commercial AKD's, containing one &bgr;-lactone ring, are prepared by the dimerization of the alkyl ketenes made from two saturated, straight-chain fatty acid chlorides; the most widely used AKDs are prepared from palmitic and/or stearic acid. Other ketene dimers, such as the alkenyl based ketene dimer (Aquapel® 421 of Hercules Incorporated, Wilmington, Del., U.S.A.), have also been used commercially.
Ketene multimers, containing more than one &bgr;-lactone ring, have been disclosed as sizing agents for paper in Japanese Kokai 168991/89 and 168992/89, both of which are incorporated herein by reference. The ketene multimers are said to show improved sizing compared to the ketene dimers previously used, when applied as an internal size incorporated in the paper pulp slurry. The ketene multimers are prepared from a mixture of mono- and dicarboxylic acids.
Although ASA and AKD sizing agents are commercially successful, they have disadvantages. Both types of sizing agents, particularly the AKD type, have been associated with handling problems in the typical high-speed conversion operations required for the current uses of fine paper made under alkaline conditions (referred to as alkaline fine paper). The problems include reduced operating speed in forms presses and other converting machines, double feeds or jams in high-speed copiers, and paper-welding and registration errors on printing and envelope-folding equipment that operate at high speeds.
These problems are not normally associated with fine paper produced under acid conditions (acid fine paper). The types of filler and filler addition levels used to make alkaline fine paper differ significantly from those used to make acid fine paper, and these can cause differences in paper properties such as stiffness and coefficient of friction which affect paper handling. Alum addition levels in alkaline fine paper, which contribute to sheet conductivity and dissipation of static charge, also differ significantly from those used in acid fine paper. This is important because the electrical properties of paper affect its handling performance. Sodium chloride is often added to the surface of alkaline fine paper to improve its performance in end-use applications.
The typical problems encountered with the conversion and end-use handling of alkaline fine paper involve:
1. Paper properties related to composition of the papermaking furnish;
2. Paper properties developed during paper formation; and
3. Problems related to sizing.
The paper properties affected by paper making under alkaline conditions that can affect converting and end-use performance include:
Curl
Variation In Coefficient Of Friction
Moisture Content
Moisture Profile
Stiffness
Dimensional Stability
MD/CD Strength Ratios
One such problem has been identified and measured as described in “Improving The Performance Of Alkaline Fine Paper On The IBM 3800 Laser Printer,” TAPPI Papermakers Conference Proceedings (1991), and in “Improving the Converting and End-Use Performance of Alkaline Fine Paper,” TAPPI Papermakers Conference Proceedings (1994), pages 155-163, the disclosures of which are incorporated herein by reference. The problem occurs when using an IBM 3800 high speed continuous forms laser printer that does not have special modifications intended to facilitate handling of alkaline fine paper. That commercially-significant laser printer therefore can serve as an effective testing device for defining the convertibility of various types of sized paper on state-of-the-art converting equipment and its subsequent end-use performance. In particular, the phenomenon of “billowing” gives a measurable indication of the extent of slippage on the IBM 3800 printer between the undriven roll beyond the fuser and the driven roll above the stacker.
Such billowing involves a divergence of the paper path from the straight line between the rolls, which is two inches (5 cm) above the base plate, causing registration errors and dropped folds in the stacker. The rate of billowing during steady-state running time is measured as the billowing height in inches above the straight paper path after 600 seconds of running time and multiplied by 10,000.
Typical alkaline AKD sized fine paper using a size furnish of 2.2 lbs. per ton (1.1 kilogram per metric tonne (kg/mtonne)) of paper shows an unacceptable rate of billowing, typically of the order of 20 to 80 inches of billowing per second×10,000 (51 to 203 cm/sec×10,000). Paper handling rates on other high-speed converting machinery, such as a Hamilton-Stevens continuous forms press or a Winkler & Dunnebier CH envelope folder, also provide numerical measures of convertibility.
There is a need for alkaline fine paper that provides improved handling performance in typical converting and reprographic operations. At the same time, the levels of sizing development need to be comparable to that obtained with the current furnish levels of AKD or ASA for alkaline fine paper.
SUMMARY OF THE INVENTION
One aspect of the invention is a surface sizing agent which is a 2-oxetanone ketene multimer that is not solid at a temperature of 35° C.
Another aspect of the invention is a method of sizing paper by surface sizing paper with these 2-oxetanone ketene multimer sizing agents.
Yet another aspect of the invention is paper surface sized with these 2-oxetanone ketene multimer sizing agents.
The method of this invention for making paper under alkaline conditions exhibits levels of sizing comparable to or better than those obtained with current AKD and ASA sizing technology, and gives improved handling performance in typical end-use and converting operations.
As used herein, “percent” or “%” means, with respect to components or ingredients of a compound, composition or mixture, the weight of the component or ingredient based on the weight of the compound, composition or mixture containing it, unless otherwise indicated.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention includes a sizing agent that is a 2-oxetanone-based multimer sizing agent (herein also referred to as 2-oxetanone multimer sizing agent or 2-oxetanone ketene multimer sizing agent), that at 35° C. is not a solid (not substantially crystalline, semi-crystalline, or waxy solid; i.e., it flows on heating without heat of fusion); paper made under alkaline conditions and treated with a surface sizing treatment comprising such sizing agent; and a method of making the sized paper using such sizing agent.
More preferably, the sizing agent according to the invention is a liquid at 25° C., or even at 20° C. (The references to “liquid” of course apply to the sizing agent per se and not to an emulsion or other combination.)
The invention comprises a 2-oxeta
Brungardt Clement L.
Riehle Richard J.
Zhang Jian Jian
Brunsman David
Hercules Incorporated
Kuller Mark D.
Sloan Martin F.
LandOfFree
Alkaline paper surface sizing agents, method of use and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Alkaline paper surface sizing agents, method of use and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Alkaline paper surface sizing agents, method of use and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2597446