Incremental printing of symbolic information – Light or beam marking apparatus or processes
Reexamination Certificate
2001-04-12
2004-02-17
Pham, Hai (Department: 2861)
Incremental printing of symbolic information
Light or beam marking apparatus or processes
C430S108600
Reexamination Certificate
active
06693657
ABSTRACT:
BACKGROUND OF THE INVENTION
A number of printing techniques for applying markings to articles, including screen printing and transfer printing, are well known. These are generally surface printing methods which means that the identification mark realized can become unreadable through mechanical damage, abrasion, chemical influences, and the like. Such printing is particularly difficult to apply to curved or textured surfaces and the special tooling costs required add to the overall cost of the product.
The desirability of marking articles through the use of a laser system is well known. Lasers have been developed so that the beam impinged on the article to be marked can be highly focused to provide fine lines in the form of letters and/or numbers of the desired size, as well as images. Lasers permit the marking to be on the surface of the article or beneath the surface. In many instances, it is desirable to have the mark disposed subsurface in order to make it more difficult to remove the indication. Such a subsurface mark, can for example, contribute to anti-counterfeiting efforts. Laser marking, whether surface or subsurface, can also be used, for example, for electronically scanning and control purposes during production.
A number of laser beam processes in which an identification mark is burned into the surface of an article part are known. The resulting rough surface usually has to be coated with a transparent lacquer on account of the danger of contamination and the unpleasant feel that results. This can become a very involved operation in the case of mass produced parts and adds to the cost of the product.
The use of laser beam marking systems for creating subsurface marks is also known. Such systems are based on creating the mark by having the article to be marked be composed of a special configuration of materials or incorporating a material within the article which either becomes visible when exposed to the laser beam or causes something else present to become visible. For example, U.S. Pat. No. 4,822,973 discloses a system in which the laser beam passes through the surface of a first plastic material in order to be absorbed in a layer of a second plastic material. This system requires a special configuration of materials of construction in the part to be marked. Other systems incorporate a quantity of carbon black, coated mica or a highly absorbing green pigment, all of which absorb energy from the laser beam to produce a visible mark. However, these materials have a degree of color which is sufficient to be visible prior to application of the laser beam and that can be unsightly or interfere with the distinctness of the mark after the laser beam has been applied. This disadvantaging characteristic is aggravated by the fact that these additives tend to require a high loading content into the article to be marked, which is not only undesirable because of the effect on appearance but also can effect the physical and mechanical properties of the object. Further, absorbance of the laser beam to cause local heating also causes a degree of foaming which detracts from the creation of a fine and distinct mark, resulting in a blemished product. Moreover, the additives tend to be specific to the wavelength emitted by the laser. For example, materials initially developed for use in conjunction with carbon dioxide lasers tend not to work particularly well (or even at all) with the increasingly popular yttrium aluminum garnet (YAG) lasers which require a material which absorbs at 1064 nm.
It is therefore the object of this invention to provide a YAG laser marking additive which will produce a black or dark mark contrasting with the surrounding area when exposed to YAG laser energy but prior thereto does not impart an appreciable color to the surrounding area or cause a significant change in the performance of the material in which it has been added.
SUMMARY OF THE INVENTION
This invention relates to a YAG laser marking additive and its use. More particularly, the YAG laser marking additive of the present invention is a calcined powder of co-precipitated mixed oxides of tin and antimony. When the powder absorbs YAG laser energy and converts it into heat, carbonization of the surrounding material occurs and results in the formation of a black or dark mark that contrasts to the remainder of the surrounding area. Because of the particle size of the powder and its efficiency, the powder does not impart an appreciable amount of color to the object in which it is incorporated. It also does not cause excess foaming so that the mark achieved is smoother in texture.
DESCRIPTION OF THE INVENTION
In accordance with the present invention, provided is a laser marking additive that is adapted for use in conjunction with a YAG laser. The additive is a calcined powder of co-precipitated mixed oxides of tin and antimony in which the antimony concentration is greater at the surface of the co-precipitate particles than in the interior of the particles. The powder is principally tin oxide and only a small amount of antimony oxide that is expressed as Sb
2
O
3
. The Sb
2
O
3
level can be up to about 17%. Preferably, the amount of antimony oxide is about 1 to 5% of the tin oxide.
Any procedure which causes the co-precipitate to form preferably at low pH can be employed. One procedure which can be used involves forming a solution from salts or oxides of tin and antimony and then adjusting the conditions so as to cause the oxides to co-precipitate. In this method, the identity of the oxide or salt is not critical and any material can be selected as long as both the tin and antimony reagents can be dissolved in the same solvent. For example, aqueous acidic solutions can be prepared using the oxides, sulfates, fluorides, chlorides, bromides and iodides of the metals, as well as salts of organic acids which are soluble. Tin chloride and antimony oxide are both readily available commercially and these are presently preferred. It is also presently preferred to dissolve these materials in water, with the assistance of a mineral acid if needed or helpful. The mixed oxides can be made to precipitate from such a solution by changing the pH to an appropriate level. Any convenient base can be used to adjust the pH but sodium hydroxide is presently preferred because of its availability. The pH during precipitation is preferably low and by that is meant the pH is less than about 2.6 and more preferably about 1.6 to 2.1.
The resulting precipitate can be recovered from the solution by any convenient means such as filtering or centrifuging and, if desired, washed. The resulting precipitate is thereafter calcined at an appropriate temperature, for example, at least about 550° C. and preferably at least about 650° C., and which usually does not exceed about 750° C. The calcination time is usually at least about 0.5 hour and preferably at least about 1 hour but usually less than about 2 hours. The resulting calcined material is usually a particulate but can, and usually is, thereafter ground or milled to a desired size. It is desirable that the particles have an average size in the range of about 0.1-10 &mgr;m, and more preferably, about 0.5-1 &mgr;m, when measured by light scattering.
The calcination of the co-precipitated material results in a mixed metal oxide containing tin in the +4 oxidation state and antimony in the +3 oxidation state. If the antimony is not present, the material does not effectively function as a YAG laser marking additive. The process described above also results in a tin oxide particle which has been surface-enriched with antimony but whether there is an minimum degree of enrichment necessary to achieve good results has not yet been ascertained. The surface enrichment was analyzed by XPS (X-ray photoelectron spectroscopy) which has a depth of penetration of about 100 Angstroms. In samples analyzed, the surface antimony concentration was at least 15% higher than the antimony concentration as a whole. Whether insufficient surface enrichment has occurred is readily apparent since the ma
Carroll, Jr. James B.
Jones Steven A.
Brown Melanie L.
Engelhard Corporation
Pham Hai
LandOfFree
Additive for YAG laser marking does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Additive for YAG laser marking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Additive for YAG laser marking will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3339334