Adaptive autonomous agent with verbal learning

Data processing: artificial intelligence – Neural network – Learning task

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C706S025000, C706S026000, C706S014000, C706S015000

Reexamination Certificate

active

06754644

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to artificial intelligence systems and in particular to a new and useful system which builds upon artificial neural network designs and learning techniques with further processes to achieve verbal functions.
2. Relevant Background
Artificial neural networks (ANNs) are well known, and are described in general in U.S. Pat. No. 4,912,654 issued Mar. 27, 1990 to Wood (Neural networks learning method) and in U.S. Pat. No. 5,222,194 issued Jun. 22, 1993 to Nishimura (Neural network with modification of neuron weights and reaction coefficient), both of which are incorporated herein by reference.
ANNs are systems used to learn mappings from input vectors, X, to output vectors, Y. In a static and limited environment, a developer provides a training set—a database—that consists of a representative set of cases with sensor inputs (X) and corresponding desired outputs (Y), such that the network can be trained to output the correct Y for each given input X, but is limited to the developer's specification of correct outputs for each case, and therefore may not succeed in optimizing the outcomes to general users.
In the more general case, it is valuable or essential for the system to learn to generate outputs so as to optimize the expected value of a mathematical “Primary Value Function”, usually a net present expected value of some function over time. It may also be essential to learn a sequence of actions to optimize the function, rather than being restricted to a single optimal output at each moment (e.g., a robot may have to move away from a nearby object having a local maximum value, in order to acquire an object having a larger, or global, maximum value). The preferred class of techniques meeting these requirements is adaptive critics, described in Miller, Sutton, and Werbos, Eds., Neural networks for control. Cambridge, Mass.: MIT Press (1990), and in Barto, A., Reinforcement learning and adaptive critic methods. In D. A. White & D. Sofge (Eds.), Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. Van Nostrand (1992).
Connecting actual or simulated sensors and actual or simulated actuators to the inputs and outputs, respectively, of adaptive critics and related systems, make complete adaptive autonomous agents. These agents are a focus of some researchers in robotics sometimes called “behavior-oriented artificial intelligence” as described in U.S. Pat. No. 5,124,918 and in Brooks, 1990, and Maes, 1993-4.
The advantages of these systems are that they are by definition capable of acting in real environments. With adaptive critics and related techniques, a training set may either be constructed by the developed, or collected from actual historical data, or created by putting the system into contact with the actual application environment.
While ANN techniques have several major advantages (they learn rather than requiring programming, they can accept many forms of inputs, and certain designs can perform mathematical optimization of a value function) they can only learn from direct experience and not from verbal/symbolic/codified knowledge which comprises the large majority of available human knowledge.
Although ANNs have been used for manipulation of language, they have not been used for functional interaction with objects. See, for example (Davis, 1992); Rumelhart and McClelland (1986) (ANN taught to output the past tense of verbs when given the present tense form); Elman (1992) (ANN taught to predict the next word in a sentence). The majority of research attempts to assign a grammatical role for each word in sentences. In this research, the values used in the training signals are provided by the trainer rather than being derivable from the functional value contributed by the verbal responses.
On the other hand, expert systems incorporate verbal knowledge, especially condition-action pairs or rules. However, the knowledge in most potential application domains for intelligent systems cannot be represented adequately by such rules. Moreover, traditional expert systems have no capability to learn from experience to improve performance. A further disadvantage of expert systems is the effort required to formulate the necessary rules. The overall architecture designs require so much processing that they have been far to slow to control realistic sensorimotor systems for robotics.
To reduce the burden of formulating the rules for expert systems, an approach typically called machine learning was developed. This approach consists basically of logical inference from data to produce rules. This is a very restricted form of learning as compared with the more general and powerful methods of ANNs.
While the potential value of combining the learning, representation, and optimization of ANNs with verbal capabilities such as those of expert systems and fuzzy logic is clear, prior attempts have achieved only very limited functionality.
Hybrid designs contain both expert system and ANN subsystems, so they are inherently complex, and have achieved only very limited results. See, for example, Caudill, M. (1991) Expert networks. Byte, 16(10), 108-116.
The present invention draws from theoretical analyses regarding the problems of functional language usage outlined in Verbal Behavior, by B. F. Skinner in 1957. The key assumption of Skinner's “radical behaviorist” theory is that verbal behavior is not fundamentally different from nonverbal behavior. Linguistics theorists in general and connectionist language researchers in particular have been aware of Skinner's theory since its publication, but have consistently vehemently rejected it as being erroneous or not applicable (Chomsky, 1959; Harris, 1993; Pinker, 1995). The main criticisms are that the theory supposedly could not produce the very rapid learning of language which is seen with humans, that it could not account for the production of novel sequence of speech, and in general that the “simple” concepts of operant conditioning could not account for the enormous complexity of language. The authors of the seminal volumes on neural networks, including language research, (McClelland, Rumelhart, et al., 1986) explicitly reject the behavioral paradigm: “In this sense, our models must be seen as completely antithetical to the radical behaviorist program.” (p. 121).
Certain ANN architectures, such as higher-order networks, have the potential to permit rules to be programmed directly into networks. See, for example, Hutchison, W. R. & Stephens, K. R., Integration of distributed and symbolic knowledge representations, Proceedings of the first international conference on neural networks, 2, 395-398, IEEE Press. This can be accomplished by connecting the condition part of the rule (as inputs) to the action part of the rule (as outputs). Most ANN architectures and algorithms are not compatible with such an approach.
The most common technique for training ANNs to follow rules has been to construct training sets whose mastery requires following the rules. The ANN may be allowed to make errors or it may be artificially forced to make the correct response (Lin, 1991; Whitehead, 1991). As with direct programming, the resulting system complies, but does not explicitly follow, the rules. There are a number of major disadvantages to training compliance by examples:
a. Constructing the set of training examples is usually a significant additional effort beyond formulating the rule; it must be done for every rule.
b. It may be difficult or impossible to create a training set that contains the desired relationships while avoiding irrelevant relations.
c. It is especially difficult—even impossible in some networks—to train correct behavior where certain actions are almost always rewarded (e.g., crossing railroad tracks, investing in real estate in previously solid markets), but on rare occasions have catastrophic results.
d. Many relations are so remote in time or space, or so weak in probability that they will never be learned by direct experience o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Adaptive autonomous agent with verbal learning does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Adaptive autonomous agent with verbal learning, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adaptive autonomous agent with verbal learning will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3335244

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.