Internal-combustion engines – Engine speed regulator – Idle speed control
Reexamination Certificate
2004-04-30
2004-12-28
Mohanty, Bibhu (Department: 3747)
Internal-combustion engines
Engine speed regulator
Idle speed control
C123S337000
Reexamination Certificate
active
06834637
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is generally related to an adapter for an idle air control valve and, more particularly, to an adapter which rigidly attaches an idle air control valve to a throttle body while maintaining the idle air control valve at a position which is displaced from the throttle body and disposed in non contact relation with the throttle body.
2. Description of the Prior Art
As is generally known by those skilled in the art, idle air control valves are used to allow a preselected amount of air to bypass a closed throttle plate when an internal combustion engine is being operated at idle speed. The idle air control valve is typically controlled by reaction to pressure changes or electronically by signals received from an engine control unit (ECU). Idle air control valves can comprise linear valves or stepper motors to adjust the amount of air that is allowed to bypass the throttle plate.
U.S. Pat. No. 4,452,201, which issued to Mazur et al. on Jun. 5, 1984, describes an automatic idle speed actuator valve. An auxiliary air bypass actuator valve of small size is disclosed which provides a quick response to the changing RPM of the engine due to changing loads. The actuator employs a stationary D-shaped orifice in communication with a rotatable valve member and a D-shaped disk to regulate the amount of auxiliary air which bypasses the throttle blade in an electronic fuel injection system.
U.S. Pat. No. 6,647,956, which issued to Sharpton on Nov. 18, 2003, discloses a sound attenuating system for a marine engine. A sound attenuator is provided for an idle air control valve system in order to reduce noise emanating from the idle air control valve. The sound attenuator comprises a fibrous pad that is inserted into an air conduit of the idle air control system. In a preferred embodiment, the fibrous pad is inserted into the air conduit near the air inlet where the conduit receives air from a region upstream, or above the throttle plate. A small hole can be provided through the air inlet. In certain embodiments, the air inlet of the air conduit is an opening formed in an inner cylindrical surface of the throttle body. In alternative embodiments, the air inlet can be remote from the internal surface of the throttle body.
U.S. Pat. No. 5,394,846, which issued to Jaeger et al. on Mar. 7, 1995, discloses a throttle body assembly. A dual bore throttle body assembly for a marine engine is described. The assembly includes a body having a pair of side by side bores, each of which is adapted to be enclosed by a flat throttle valve. A separate shaft is connected to each throttle valve and a throttle cable is connected to the shafts through a progressive linkage. The linkage is constructed such that only one of the valves is initially opened, and when that valve is approximately fifty percent open, the second valve is then opened. The speed of opening of the second valve is greater than that of the first valve so that both valves will reach the full opened position at the same time. Each shaft is provided with a longitudinal slot which receives the respective throttle valve, and the valves are secured within the slots by mechanical fasteners such as screws.
U.S. Pat. No. 6,158,417, which issued to Rauch et al. on Dec. 12, 2000, describes a throttle body accommodation of either an idle air control valve or a motorized throttle control. A throttle body has a first body part containing an upstream portion of the through bore and a second body part containing a downstream portion of the through bore. The two body parts are joined together to register a downstream portion of the through bore as a continuation of the upstream portion at respective confronting faces of the two body parts, capturing at least one bearing assembly of a throttle mechanism between the confronting faces to thereby journal a throttle shaft on opposite wall portions of the throttle body. The two body parts also contain a bypass air passage. In one form an idle air control valve associates with the bypass passage; in another, an electric motor actuator associates with the passage and with the throttle shaft.
U.S. Pat. No. 6,394,424, which issued to Pattullo et al. on May 28, 2002, describes a carburetor with diaphragm type fuel pump. For a four stroke engine, a carburetor with a fuel pump diaphragm which defines a fuel pump chamber on one side and a pressure pulse chamber on the other side in communication with the engine to receive pressure pulses which actuate the fuel pump diaphragm to draw fuel into the carburetor and to discharge fuel under pressure to a downstream fuel metering assembly is described. An air passage communicates an air supply with the pressure pulse chamber to provide an air flow within the pressure pulse chamber which sweeps away, dries out or aerates and removes any liquid within the pressure pulse chamber to avoid puddling of liquid fuel therein. In one form, a throttle valve carried by the carburetor body for movement between idle and wide open positions also actuates a valve which controls the flow of fluid through the air passage as a function of the position of the throttle valve.
U.S. Pat. No. 4,181,108, which issued to Bellicardi on Jan. 1, 1980, describes a system for the control of the composition of the fuel air mixture in an internal combustion engine. The system comprises an electromagnetically operated valve for controlling the supply of air to the main and idle ducts of each carburetor stage to vary the fuel air mixture in response to a signal from an oxygen concentration probe disposed upstream of the catalytic converter in the exhaust system of an internal combustion engine. The device is mounted on the vehicle structure rather than the engine and is comprised of a rotary cam disposed in operative relation with the plurality of metering valves to control the air supply from a single conduit leading from the air filter to a plurality of conduits leading to the various carburetor ducts.
U.S. Pat. No. 3,963,670, which issued to Kalert et al. on Jun. 15, 1976, describes an integrated idle and bypass system. A carburetor is disclosed which includes a supplemental fuel/air supply circuit for bypassing a throttle valve to provide a fixed fuel/air idle mixture. The supplementary fuel/air supply circuit includes separate fuel and air passageways which join at a mixing intersection. The mixing intersection communicates with a main bore of the carburetor at a point below a throttle valve thereof. The supplementary fuel/air supply circuit also includes a piston valve, which is responsive to manifold vacuum, to control flow of air through the air passageway so that the air passageway is open during periods of high manifold vacuum but closed during periods of low manifold vacuum.
U.S. Pat. No. 4,053,543, which issued to Pettitt on Oct. 11, 1977, describes an air bleed control for carburetor idle system. A carburetor for an internal combustion engine has an idle or low speed system in which air is bled into the idle fuel passage. An air bleed valve member controls the amount of air through an air bleed port for the idle fuel passage and a diaphragm operated control is connected to the air bleed control member to control the movement of the valve member. The diaphragm operated control has an air chamber on one side of the diaphragm and a vacuum chamber on the other side of the diaphragm with a restricted opening between the air and vacuum chambers.
U.S. Pat. No. 4,337,742, which issued to Carlson et al. on Jul. 6, 1982, describes an idle air control apparatus for internal combustion engine. The idle air control apparatus for a vehicle driving internal combustion engine has an air induction passage and includes a control valve in the air induction passage controlled by a stepper motor in response to the arithmetic count of applied electrical pulses. It also has a register effective to store a valve control number representing the currently desired position of the control valve and an apparatus effective upon occurrence of a predetermined engin
Brunswick Corporation
Lanyi William D.
Mohanty Bibhu
LandOfFree
Adapter for an idle air control valve does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Adapter for an idle air control valve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Adapter for an idle air control valve will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3290578