Activated forms of notch and methods based thereon

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007200, C435S007230, C530S300000

Reexamination Certificate

active

06436650

ABSTRACT:

1. FIELD OF THE INVENTION
The present invention is directed to methods for detecting or measuring Notch activation by observing or measuring the appearance of Notch on the cell surface or by observing or measuring Notch cleavage products that are indicative of Notch activation. The present invention is also directed to methods for detecting a molecule that modulates Notch activation by observing or measuring a change in the amount of Notch expressed on the cell surface or a change in the amount or pattern of Notch cleavage products. The present invention is also directed to a substantially purified activated heterodimeric form of Notch and pharmaceutical compositions and kits thereof.
2. BACKGROUND OF THE INVENTION
Genetic and molecular studies have led to the identification of a group of genes which define distinct elements of the Notch signaling pathway. While the identification of these various elements has come exclusively from Drosophila using genetic tools as the initial guide, subsequent analyses have lead to the identification of homologous proteins in vertebrate species including humans.
FIG. 1
depicts the molecular relationships between the known Notch pathway elements as well as their subcellular localization (Artavanis-Tsakonas et al., 1995, Science 268:225-232).
The Drosophila Notch gene encodes an ~300 kD transmembrane protein that acts as a receptor in a cell-cell signaling mechanism controlling cell fate decisions throughout development (reviewed, e.g., in Artavanis-Tsakonas et al., 1995, Science 268:225-232). Closely related homologs of Drosophila Notch have been isolated from a number of vertebrate species, including humans, with multiple paralogs representing the single Drosophila gene in vertebrate genomes. The isolation of cDNA clones encoding the C-terminus of a human Notch paralog, originally termed hN, has been reported (Stifani et al., 1992, Nature Genetics 2:119-127). The encoded protein is designated human Notch2 because of its close relationship to the Notch2 proteins found in other species (Weinmaster et al., 1992, Development 116:931-941). The hallmark Notch2 structures are common to all the Notch-related proteins, including, in the extracellular domain, a stretch of 34 to 36 tandem Epidermal Growth Factor-like (EGF) repeats and three Lin-12/Notch repeats (LN repeats), and, in the intracellular domain, 6 Ankyrin repeats and a PEST-containing region. Like Drosophila Notch and the related
C. elegans
genes lin-12 and glp-1 (Sternberg, 1993, Current Biology 3:763-765; Greenwald, 1994, Current Opinion in Genetics and Development 4:556-562), the vertebrate Notch homologs play a role in a variety of developmental processes by controlling cell fate decisions (reviewed, e.g., in Blaumueller and Artavanis-Tsakonas, 1997, Persp. on Dev. Neurobiol. 4:325-343). (For further human Notch sequences, see International Publication WO 92/19734.)
The extracellular domain of Notch carries 36 Epidermal Growth Factor-like (EGF) repeats, two of which (repeats 11 and 12) have been implicated in interactions with the Notch ligands Serrate and Delta. Delta and Serrate are membrane bound ligands with EGF homologous extracellular domains, which interact physically with Notch on adjacent cells to trigger signaling.
Functional analyses involving the expression of truncated forms of the Notch receptor have indicated that receptor activation depends on the six cdc10/ankyrin repeats in the intracellular domain. Deltex and Suppressor of Hairless, whose over-expression results in an apparent activation of the pathway, associate with those repeats.
Deltex is a cytoplasmic protein which contains a ring zinc finger. Suppressor of Hairless on the other hand, is the Drosophila homologue of CBF1, a mammalian DNA binding protein involved in the Epstein-Barr virus-induced immortalization of B cells. It has been demonstrated that, at least in cultured cells, Suppressor of Hairless associates with the cdc10/ankyrin repeats in the cytoplasm and translocates into the nucleus upon the interaction of the Notch receptor with its ligand Delta on adjacent cells (Fortini and Artavanis, 1994, Cell 79:273-282). The association of Hairless, a novel nuclear protein, with Suppressor of Hairless has been documented using the yeast two hybrid system; therefore, it is believed that the involvement of Suppressor of Hairless in transcription is modulated by Hairless (Brou et al., 1994, Genes Dev. 8:2491; Knust et al. 1992, Genetics 129:803).
Finally, it is known that Notch signaling results in the activation of at least certain basic helix-loop-helix (bHLH) genes within the Enhancer of Split complex (Delidakis et al ., 1991, Genetics 129:803). Mastermind encodes a novel ubiquitous nuclear protein whose relationship to Notch signaling remains unclear but is involved in the Notch pathway as shown by genetic analysis (Smoller et al., 1990, Genes Dev. 4:1688).
The generality of the Notch pathway manifests itself at different levels. At the genetic level, many mutations exist which affect the development of a very broad spectrum of cell types in Drosophila. Knockout mutations in mice are embryonic lethals consistent with a fundamental role for Notch function (Swiatek et al., 1994, Genes Dev. 8:707). Mutations in the Notch pathway in the hematopoietic system in humans are associated with lymphoblastic leukemia (Ellison et al., 1991, Cell 66:649-661). Finally the expression of mutant forms of Notch in developing Xenopus embryos interferes profoundly with normal development (Coffman et al., 1993, Cell 73:659). Increased level of Notch expression is found in some malignant tissue in humans (International Publication Wo 94/07474).
The expression patterns of Notch in the Drosophila embryo are complex and dynamic. The Notch protein is broadly expressed in the early embryo, and subsequently becomes restricted to uncommitted or proliferative groups of cells as development proceeds. In the adult, expression persists in the regenerating tissues of the ovaries and testes (reviewed in Fortini et al., 1993, Cell 75:1245-1247; Jan et al., 1993, Proc. Natl. Acad. Sci. USA 90:8305-8307; Sternberg, 1993, Curr. Biol. 3:763-765; Greenwald, 1994, Curr. Opin. Genet. Dev. 4:556-562; Artavanis-Tsakonas et al., 1995, Science 268:225-232). Studies of the expression of Notch1, one of three known vertebrate homologues of Notch, in zebrafish and Xenopus, have shown that the general patterns are similar; with Notch expression associated in general with non-terminally differentiated, proliferative cell populations. Tissues with high expression levels include the developing brain, eye and neural tube (Coffman et al., 1990, Science 249:1438-1441; Bierkamp et al., 1993, Mech. Dev. 43:87-100). While studies in mammals have shown the expression of the corresponding Notch homologues to begin later in development, the proteins are expressed in dynamic patterns in tissues undergoing cell fate determination or rapid proliferation (Weinmaster et al., 1991, Development 113:199-205; Reaume et al., 1992, Dev. Biol. 154:377-387; Stifani et al., 1992, Nature Genet. 2:119-127; Weinmaster et al., 1992, Development 116:931-941; Kopan et al., 1993, J. Cell Biol. 121:631-641; Lardelli et al., 1993, Exp. Cell Res. 204;364-372; Lardelli et al., 1994, Mech. Dev. 46:123-136; Henrique et al., 1995, Nature 375:787-790; Horvitz et al., 1991, Nature 351:535-541; Franco del Amo et al., 1992, Development 115:737-744). Among the tissues in which mammalian Notch homologues are first expressed are the pre-somitic mesoderm and the developing neuroepithelium of the embryo. In the pre-somitic mesoderm, expression of Notch1 is seen in all of the migrated mesoderm, and a particularly dense band is seen at the anterior edge of pre-somitic mesoderm. This expression has been shown to decrease once the somites have formed, indicating a role for Notch in the differentiation of somatic precursor cells (Reaume et al., 1992, Dev. Biol. 154:377-387; Horvitz et al., 1991, Nature 351:535-541). Similar expression patterns are seen for mouse Delta (Simske et al., 1995, Nature 375;142-145).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Activated forms of notch and methods based thereon does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Activated forms of notch and methods based thereon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Activated forms of notch and methods based thereon will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2959037

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.