A1 alloy thin film for semiconductor device electrode and...

Stock material or miscellaneous articles – All metal or with adjacent metals – Composite; i.e. – plural – adjacent – spatially distinct metal...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S650000, C428S938000, C420S552000, C204S298130, C204S192170

Reexamination Certificate

active

06387536

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the technical field of an Al alloy thin film for semiconductor device electrodes and a sputtering target to deposit the Al film by sputtering process for semiconductor device electrodes. Particularly, the present invention relates to the technical field of an Al alloy thin film for semiconductor device electrodes suitable as electrodes (thin film electrodes and interconnections) of a thin film transistor-liquid crystal display, and a sputtering target to deposit the Al film by sputtering process for semiconductor device electrodes.
2. Description of the Related Art
Liquid crystal displays (referred to as “LCDS” hereinafter) as semiconductor devices permit decreases in thickness, weight, and power consumption, and the formation of an image with high resolution, as compared with conventional display devices comprising cathode ray tubes. Therefore, LCDs are used displays for television sets and personal computers, etc. In recent years, a thin film transistor-liquid crystal display (referred to as “TFT-LCD” hereinafter) having a structure in which a thin film transistor (referred to as “TFT” hereinafter) is incorporated as a switching element for each LCD pixel has become the mainstream. The TFT represents an active element comprising a semiconductor thin film, and electrodes (thin film electrodes and interconnections) comprising metal thin films connected to the semiconductor thin film. Therefore, the semiconductor device electrode is defined as an electrode (a thin film electrode or interconnection) used as a part of TFT. In a TFT, the electrode and interconnection are electrically connected.
A thin film (referred to as an “electrode thin film” hereinafter) used for an electrode of the LCD is required to have various properties, and especially low electrical resistivity, high hillock resistance, high void resistance, and high corrosion resistance are considered important. These characteristics are considered important because of the following reasons.
[1] The reason why low electrical resistivity is required is first described. The electrical resistivity of a material used as the LCD electrode thin film affects the transmission rate of an electric signal transmitted through the material. For example, the use of a material having high electrical resistivity as the electrode thin film causes a decrease in the transmission rate of an electric signal, and thus causes deterioration in the display performance of LCD due to an electric signal delay. Therefore, low electrical resistivity is required for preventing the occurrence of such an electric signal delay.
[2] Next, the reason why high hillock resistance (meaning that no hillock occurs by heat treatment) is required, and the reason why high void resistance (meaning that no void occurs by heat treatment) is required are described. After the deposition of the electrode thin film, the electrode thin film is annealed at about 300 to 400° C. in the LCD manufacturing process. This is because of the presence of a step requiring heating, such as the step of forming a Si semiconductor layer, after the deposition of the electrode thin film. For example, in the use of a material having poor hillock resistance and void resistance, such as a pure Al thin film, for the electrode thin film, the heat treatment causes small convexities such as hillocks (protrusions caused by compressive stress as driving force due to a difference in the thermal expansion coefficient between a substrate and a thin film), or small concavities such as voids (recesses caused by compressive stress as driving force due to a difference between the thermal expansion coefficients of a substrate and a thin film) on the surface of the thin film. Conventionally, the electrode thin film is located at the bottom of the multilayer structure of LCD, and thus the occurrence of hillocks or voids causes a problem in which other thin films cannot be evenly laminated on the electrode thin film. In addition, when an insulating thin film is laminated on the electrode thin film, the hillocks produced on the electrode thin film protrude the upper insulating thin film to cause a problem in which an electric short circuit (electric insulation failure) occurs between layers. Furthermore, the occurrence of the voids on the electrode thin film causes the problem of producing an electrical disconnection (conduction failure) in the peripheries of the voids. Therefore, high hillock resistance and void resistance are required for preventing these problems.
[3] The reason why high corrosion resistance is required is finally described. A material used as the LCD electrode thin film is exposed to an alkaline solution such as a photoresist developer in a photolithographic step after the deposition of the electrode thin film. For example, in the use of a material having low corrosion resistance against the alkaline solution for the electrode thin film, the electrode thin film is corroded with the alkaline solution to deteriorate the precision of the electrode shape. The deterioration in precision of the electrode shape causes an electrical short circuit or disconnection in the electrode thin film. Therefore, high corrosion resistance against the alkaline solution is required for preventing the precision of the electrode shape from deteriorating due to corrosion.
As the material for the LCD electrode thin film, (1) a Ta thin film, (2) a Ti thin film, (3) a Cr thin film, (4) a Mo thin film, and the like are conventionally used. Also, (5) an Al—Ta alloy thin film, (6) an Al—Ti alloy thin film, and the like proposed by the inventors in Japanese Unexamined Patent Publication No. 5-100248, (7) an Al—Fe system (at least one of Fe, Co, Ni, Ru, Rh, Ir, and Nd) alloy thin film, and the like disclosed in Japanese Unexamined Patent Publication No. 7-4555 are used. Furthermore, the inventors proposed (8) an Al—Ni—Y thin film (Japanese Unexamined Patent Publication No. 11-3878).
The material used for the LCD electrode thin film is required to have severe characteristics by the recent trend toward a larger LCD screen and higher resolution. Particularly, lower electrical resistivity, higher hillock resistance, higher void resistance, and higher corrosion resistance are required. However, the conventional materials for electrode thin films cannot satisfy all requirements. This will be described in detail below.
[1] The shape of the LCD electrode thin film tends to be further made fine with increases in the LCD panel size and resolution. Making fine the shape causes an increase in the electric resistance of the electrode portion and interconnection portion, and an electric signal delay due to this increase in electric resistance causes a great difficulty in improving the LCD display performance. In order to prevent such an electric signal delay accompanying the formation of the electrode thin film having a finer shape, for example, in a LCD having a panel size of 10 inch or more, the electrical resistivity of the electrode thin film must be decreased to 6 &mgr;&OHgr;cm or less. However, (1) a Ta thin film has an electrical resistivity of about 180 &mgr;&OHgr;cm; (2) a Ti thin film, an electrical resistivity of about 80 &mgr;&OHgr;cm; (3) a Cr thin film, an electrical resistivity of about 50 &mgr;&OHgr;cm; (4) a Mo thin film, an electrical resistivity of about 50 &mgr;&OHgr;cm. Furthermore, (5) an Al—Ta alloy thin film and (6) an Al—Ti alloy thin film have an electrical resistivity of about 10 &mgr;&OHgr;cm. It is thus very difficult to use these materials as the LCD electrode thin film required to have an electrical resistivity of 6 &mgr;&OHgr;cm or less.
[2] The number of heat treatments at about 300 to 400° C. which are applied to the electrode thin film in a step after the deposition of the electrode thin film in the process for manufacturing LCD is not limited to one, and the heat treatment is repeated a plurality of times. Therefore, high hillock resistance and high void resistan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

A1 alloy thin film for semiconductor device electrode and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with A1 alloy thin film for semiconductor device electrode and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A1 alloy thin film for semiconductor device electrode and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2866081

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.