Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
2001-12-04
2003-12-02
Desai, Rita (Department: 1625)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
Reexamination Certificate
active
06656953
ABSTRACT:
BACKGROUND OF THE INVENTION
Dopamine, norepinephrine and serotonin are mammalian monoamine neurotransmitters that play important roles in a wide variety of physiological processes. Therefore, compounds that selectively modulate the activity of these three neurotransmitters, either individually, in pairs, or as a group, promise to serve as agents effective in the treatment of a wide range of maladies, conditions and diseases that afflict mammals due to atypical activities of these neurotransmitters.
For example, depression is believed to result from dysfunction in the noradrenergic or serotonergic systems. Furthermore, the noradrenergic system appears to be associated with increased drive, whereas the serotonergic system relates more to changes in mood. Therefore, it is possible that the different symptoms of depression may benefit from drugs acting mainly on one or the other of these neurotransmitter systems. On the other hand, a single compound that selectively affects both the noradrenergic and serotonergic systems should prove effective in the treatment of depression comprising symptoms related to dysfunction in both systems.
Dopamine plays a major role in addiction. Many of the concepts that apply to dopamine apply to other neurotransmitters as well. As a chemical messenger, dopamine is similar to adrenaline. Dopamine affects brain processes that control movement, emotional response, and ability to experience pleasure and pain. Regulation of dopamine plays a crucial role in our mental and physical health. Neurons containing the neurotransmitter dopamine are clustered in the midbrain in an area called the substantia nigra. In Parkinson's disease, the dopamine-transmitting neurons in this area die. As a result, the brains of people with Parkinson's disease contain almost no dopamine. To help relieve their symptoms, these patients are given L-DOPA, a drug that can be converted in the brain to dopamine.
Certain drugs are known as dopamine agonists. These drugs bind to dopamine receptors in place of dopamine and directly stimulate those receptors. Some dopamine agonists are currently used to treat Parkinson's disease. These drugs can stimulate dopamine receptors even in someone without dopamine-secreting neurons. In contrast to dopamine agonists, dopamine antagonists are drugs that bind but don't stimulate dopamine receptors. Antagonists can prevent or reverse the actions of dopamine by keeping dopamine from activating receptors.
Dopamine antagonists are traditionally used to treat schizophrenia and related mental disorders. A person with schizophrenia may have an overactive dopamine system. Dopamine antagonists can help regulate this system by “turning down” dopamine activity.
Cocaine and other drugs of abuse can alter dopamine function. Such drugs may have very different actions. The specific action depends on which dopamine receptors and brain regions the drugs stimulate or block, and how well the compounds mimic dopamine. Drugs such as cocaine and amphetamine produce their effects by changing the flow of neurotransmitters. These drugs are defined as indirect acting because they depend on the activity of neurons. In contrast, some drugs bypass neurotransmitters altogether and act directly on receptors. Such drugs are direct acting.
Use of these two types of drugs can lead to very different results in treating the same disease. As mentioned earlier, people with Parkinson's disease lose neurons that contain dopamine. To compensate for this loss, the body produces more dopamine receptors on other neurons. Indirect agonists are not very effective in treating the disease since they depend on the presence of dopamine neurons. In contrast, direct agonists are more effective because they stimulate dopamine receptors even when dopamine neurons are missing.
Certain drugs increase dopamine concentrations by preventing dopamine reuptake, leaving more dopamine in the synapse. An example is the widely abused stimulant drug, cocaine. Another example is methylphenidate, used therapeutically to treat childhood hyperkinesis and symptoms of narcolepsy.
Sensitization or desensitization normally occur with drug exposure. However, addiction or mental illness can tamper with the reuptake system. This disrupts the normal levels of neurotransmitters in the brain and can lead to faulty desensitization or sensitization. If this happens in a region of the brain that serves emotion or motivation, the individual can suffer severe consequences. For example, cocaine prevents dopamine reuptake by binding to proteins that normally transport dopamine. Not only does cocaine “bully” dopamine out of the way, it also hangs on to the transport proteins much longer than dopamine does. As a result, more dopamine remains to stimulate neurons, which causes a prolonged feelings of pleasure and excitement. Amphetamine also increases dopamine levels. Again, the result is over-stimulation of these pleasure-pathway nerves in the brain.
Dopamine activity is implicated in the reinforcing effects of cocaine, amphetamine and natural rewards. However, dopamine abnormalities are also believed to underlie some of the core attention deficits seen in acute schizophrenics.
Norepinephrine, also called noradrenaline, is a neurotransmitter that doubles part-time as a hormone. As a neurotransmitter, norepinephrine helps to regulate arousal, dreaming, and moods. As a hormone, it acts to increase blood pressure, constrict blood vessels and increase heart rate—responses that occur when we feel stress.
Serotonin (5-hydroxytryptamine, 5-HT) is widely distributed in animals and plants, occurring in vertebrates, fruits, nuts, and venoms. A number of congeners of serotonin are also found in nature and have been shown to possess a variety of peripheral and central nervous system activities. Serotonin may be obtained from a variety of dietary sources; however, endogenous 5-HT is synthesized in situ from tryptophan through the actions of the enzymes tryptophan hydroxylase and aromatic L-amino acid decarboxylase. Both dietary and endogenous 5-HT are rapidly metabolized and inactivated by monoamine oxidase and aldehyde dehydrogenase to the major metabolite, 5-hydroxyindoleacetic acid (5-HIAA).
Serotonin is implicated in the etiology or treatment of various disorders, particularly those of the central nervous system, including anxiety, depression, obsessive-compulsive disorder, schizophrenia, stroke, obesity, pain, hypertension, vascular disorders, migraine, and nausea. Recently, understanding of the role of 5-HT in these and other disorders has advanced rapidly due to increasing understanding of the physiological role of various serotonin receptor subtypes.
It is currently estimated that up to 30% of clinically diagnosed cases of depression are resistant to all forms of drug therapy. To achieve an effective therapy for such patients, it is logical to develop drugs that possess reuptake inhibition profiles different from those of drugs currently available on the market. For example, the exact role of dopamine in depressive illness is far from clear; however, intervention in the dopamine system may hold promise for the treatment of a subset of major depression.
SUMMARY OF THE INVENTION
One aspect of the present invention relates to heterocyclic compounds. A second aspect of the present invention relates to the use of the heterocyclic compounds as ligands for various mammalian cellular receptors, including dopamine, serotonin, or norepinephrine transporters. The compounds of the present invention will find use in the treatment of numerous ailments, conditions and diseases which afflict mammals, including but not limited to addiction, anxiety, depression, sexual dysfunction, hypertension, migraine, Alzheimer's disease, obesity, emesis, psychosis, analgesia, schizophrenia, Parkinson's disease, restless leg syndrome, sleeping disorders, attention deficit hyperactivity disorder, irritable bowel syndrome, premature ejaculation, menstrual dysphoria syndrome, urinary incontinence, inflammatory pain, neuropathic pain, Lesche
Desai Rita
Foley & Hoag LLP
Gordon Dana M.
Sepracor Inc.
LandOfFree
4,4-Disubstituted piperidines, and methods of use thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with 4,4-Disubstituted piperidines, and methods of use thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and 4,4-Disubstituted piperidines, and methods of use thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3150931