Non-volatile memory cells, high voltage transistors and...

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S201000

Reexamination Certificate

active

06815755

ABSTRACT:

The present invention relates to non-volatile memory cells integrated on a chip with logic transistors and/or high voltage transistors.
One of the most serious limiting factors in scaling the tunnel oxide in floating gate non-volatile memory cells is stress-induced leakage current (SILC). For oxides thinner than 8 nm the ability to store charge on the floating gate of a memory cell becomes questionable. It has been demonstrated that the characteristics of the tunnel oxide change as a result of passing charge through the oxide. Program/erase cycles weaken the ability of the oxide to isolate the floating gate from a substrate. Some believe that non-volatile memory oxide scaling much below 8 nm is difficult and perhaps impossible unless the 10-year charge retention requirement for non-volatile memory cells is relaxed. Some have even suggested that “non-volatile” memories may have to be “refreshed” periodically like DRAMs, but not nearly as frequently, in order not to lose the data stored. This may be a viable solution for some applications, however, the concept of “non-volatile” changes to “not-so-much-volatile”. Besides, “refreshing” may lead to failure. One application that could have problems with this approach is the “smart-card”, which could lose vital information if refreshing does not occur, and these cards are often not connected to a power supply for long periods of time.
If the tunnel oxide is limited to 8 nm, or a higher value, it will be difficult to make a cost-effective, non-volatile memory module embedded in an advanced CMOS logic process. In such a process, floating gate non-volatile memory cells are manufactured on the same substrate as logic CMOS transistors. The gate oxide thicknesses of the CMOS logic transistors are typically in the order of 5 nm or less.
Assuming that Folwer-Nordhein tunneling is used for at least one of the programming or erasing procedures, the thickness of the tunnel oxide in the memory cell, in combination with the coupling ratio of the control gate to the floating gate, determines the voltage necessary for the efficient transfer of charge to and/or from the floating gate. In particular, a tunnel oxide in the range from 8 to 9 nm will usually require a voltage of such high level that it is necessary to include high voltage transistors on the substrate for controlling this high voltage. The gate oxide of these high voltage transistors must be much thicker than the tunnel oxide of the memory cells: typically, 15 to 25 nm is used.
Moreover, there is an insulating layer between the control gate and the floating gate of the memory cell, which is typically made of oxide-nitride-oxide (ONO).
Therefore, in a process in which floating gate memory cells, logic transistors and high voltage transistors must be made on the same substrate there are typically at least the following four oxide/insulating layers:
the tunnel oxide of the memory cell;
the gate oxide of the high voltage transistor;
the gate oxide of the logic transistor; and
the insulating layer between the control gate and the floating gate of the memory cell.
Until now these oxide-insulating layers were provided in different thicknesses, thereby adding to the costs of the process and introducing reliability risks.
H. Watanabe, e.a., “Scaling of Tunnel Oxide Thickness for Flash EEPROMs Realizing Stress-Induced Leakage current Reduction”, 1994 Symposium on VLSI Technology Digest of Technical Papers, 1994, pp. 47-48, discloses a method for reducing stress-induced leakage current (SILC) in floating gate non-volatile memory cells. One of the measures taken is to lower the floating gate impurity concentration. As a result, the SILC level is reduced to such a level that the thickness of the tunnel oxide below the floating gate can be reduced to about 6 nm. In order to prevent an increase of the programming voltage to due to the lowered impurity concentration, it is proposed to apply an impurity concentration of 5 to 7×10
19
cm
−3
.
T. Kubota, e.a., “The Effect of the Floating Gate/Tunnel SiO
2
Interface on FLASH Memory Data Retention Reliability”, NEC Research & Development, Vol. 38, 1997, No. 4, pp. 412-418, state that the data retention time of a floating gate memory cell will be enhanced by lowering the impurity concentration since this will lower the SILC level.
By using the proposals made by Watanabe, e.a., and Kubota, e.a., it would be possible to scale the thickness of the tunnel oxide similarly as the process scales for the next generation. It is envisaged that gate oxides having thicknesses in the order of 2 to 5 nm will be used.
By making cells with a thin, very lightly doped polysilicon floating gate, it is possible to make such thin tunnel oxides and still have an acceptable level of SILC.
The object of the present invention is to provide a simplified method of manufacturing on a single substrate at least one memory cell and at least one logic transistor.
In order to achieve this object, the present invention claims a method of manufacturing on a single substrate at least one memory cell and at least one logic transistor;
the at least one memory cell comprising a floating gate, a tunnel oxide layer between the floating gate and the substrate, a control gate, and a control oxide layer between the control gate and the floating gate;
the at least one logic transistor comprising a logic transistor gate and a logic transistor gate oxide between the logic transistor gate and the substrate, characterized in that the tunnel oxide layer of the memory cell and the logic transistor gate oxide are made in a same step and have a same or substantially same predetermined first thickness.
Since it is possible to control the SILC level by choosing a proper impurity concentration of the non-volatile memory floating gate, the tunnel oxide layer thickness of the memory cell can be designed such that it is equal to the thickness of the logic transistor gate oxide. Thus, they can be made in the same step of the process, which reduces costs and enhances reliability.
A similar approach can be used to simplify the process of integrating floating gate memory cells and the high voltage transistors needed for the programming and deprogramming of the memory cells on the same substrate. Therefore, the invention also relates to a method of manufacturing on a single substrate at least one memory cell and at least one high voltage transistor;
the at least one memory cell comprising a floating gate, a tunnel oxide layer between the floating gate and the substrate, a control gate, and a control oxide layer between the control gate and the floating gate;
the at least one high voltage transistor comprising a high voltage transistor gate and a high voltage transistor gate oxide between the high voltage transistor gate and the substrate,
characterized in that the high voltage transistor gate oxide comprises a first gate oxide layer on top of the substrate and a second gate oxide layer on top of the first gate oxide layer,
in that the first gate oxide layer and the tunnel oxide layer of the memory cell are made in a same first step and have a same or substantially same predetermined first thickness,
and in that the second gate oxide layer and the control oxide layer of the memory cell are made in a same second step and have a same or substantially same predetermined second thickness.
By splitting up the gate oxide of the high voltage transistor into a first gate oxide layer and a second gate oxide layer, with the first gate oxide layer thickness being made in the same manufacturing step as the tunnel oxide of the memory cell and the second gate oxide layer being made in the same manufacturing step as the insulating layer between the control gate and the floating gate of the memory cell, a more cost-effective and more reliable process is obtained. Then, both the thicknesses of the tunnel oxide, the insulating layer between the control gate and the floating gate in the memory cell and the gate oxide of the high voltage transistor can be designed in accordance with any requirement because the doping concentrati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-volatile memory cells, high voltage transistors and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-volatile memory cells, high voltage transistors and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-volatile memory cells, high voltage transistors and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3341390

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.