Method and arrangement for determining the geometry of...

Optics: measuring and testing – Shape or surface configuration – By focus detection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C033S503000

Reexamination Certificate

active

06822749

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a method and an arrangement for measurement of the geometry of objects by means of a coordinate measuring instrument with an optical system for measuring and imaging of at least one light dot, light spot, contrast transaction or edge of which the position is determined by the geometry, on at least one detector whose output signals are evaluated, where a selectable imaging scale and a selectable distance from the respective object can be adjusted using the optical system.
A method and an arrangement of the type described above are known (R.-J. Ahlers, W. Rauh: “Koordinatenmesstechnlk mit Bildverabeitung” in VDI-Z 131 (1989) No. 11, p. 12, 16). The known coordinate measuring machine (CMM) has a special optical system with telecentric beam path. The system is furthermore designed such that a change in magnification does not result in any change in the object distance. For height measurements, an autofocus feature is provided for the known coordinate measuring instrument and operates as a zero indicator, making an additional mechanical movement necessary in the third dimension.
Also known is a control unit for lenses with variable focal distance, in which a front lens group, a first sliding element for focal distance alteration and a second sliding elements for keeping the image location constant are each connected to drive systems for axial displacement. The control contains a gate circuit with which the optical sliding elements can be immobilized at any point regardless of the input conditions (DE 26 11 639 C3).
A coordinate measuring machine (CMM) is known from DE 196 39 780 A1 using which measurement is both tactile and optical for determination of the structures of objects. This permits automatic focusing of the optical system by means of a camera. A coordinate measuring machine is known from U.S. Pat. No. 5,035,503 with a zoom lens that is used for measuring and correcting movement errors in a classic coordinate measuring instrument. The lens itself is not used for direct measuring of objects.
Finally, a device is known for measuring geometry structures with a photogrammetric system, a feeler pin of flexible steel and a sensing element connected to the shaft, that is brought into contact with the object to be measured during measuring. The shaft is provided with targets, e.g. balls, whose position relative to the feeler reference system is determined by the photogrammetric system. The position of the sensing elements is measured from the target positions that emit light (DE 297 10 242 U1).
The problem underlying the present invention is to provide a method suitable for a wide range of applications, and an arrangement for use in a wide range of applications for measuring the geometry of objects with an optical system that determines at low cost light generated depending on the geometry, and images it on at least one detector and permits high resolutions in a wide measuring range.
SUMMARY OF THE INVENTION
The problem is solved in a method of the type mentioned at the outset and in accordance with the invention substantially in that the optical system comprises a zoom lens of which the lens groups are each moved separately by motor power into positions for the imaging scale and the distance from the object. This method is suitable for precise measurement of geometries that can differ greatly in their profile.
In a particularly expedient embodiment, the topography-dependent light is generated by a feeler element that is brought into contact with the object and whose position is ascertained directly or indirectly using the optical system by at least one target. This embodiment permits a choice between an optical, i.e. proximity-type method, and an optical/mechanical method working with mechanical sensing. The selection depends on the type of geometry to be measured, on the material properties, on the required imaging scale, on the required depth of field and on the required measuring distance/working distance.
In measurement of the geometry of the object with the aid of the feeler element, the working distance of the optical system is ideally set with the zoom lens in such a way that the object/measuring plane is in the center of the feeler element.
In measurement of the surface topography without feeler element, i.e. only optically, the working distance of the optical system is preferably set using the zoom lens in such a way that the object/measuring plane is in front of the feeler element. The feeler element is here outside the depth of field of the optical system and is not visible.
Alternatively, it is possible with the zoom lens to set the object/measuring plane spatially on that side of the feeler element facing the object.
In particular, the position of the feeler element and/or of the at least one target is determined by means of light beams reflecting from and/or shading it/them and/or emanating from the feeler element.
It is expedient if the deflection of the feeler element caused when the object is contacted is measured by means of the optical system. The deflection can be ascertained by the displacement of the image of the feeler element on the detector. It is also possible to determine the deflection of the feeler element by evaluation of the contrast function of the image using an image processing system. The deflection can also be determined from a change in the size of the image of the at least one target, this image depending on the beam-optical correlation between the object distance and the magnification. Furthermore, the deflection of the feeler element can be determined by the apparent size change of the target image caused by the loss of contrast due to defocusing.
In an arrangement for measuring the geometry of objects by means of a coordinate measuring instrument with an optical system for determining and imaging of at least one light dot, light spot, contrast transition or edge of which the position is determined by the surface topography, on at least one detector whose output signals can be evaluated, with the optical system being designed for setting of a selectable imaging scale and of a selectable distance from the respective object, the problem is substantially solved in accordance with the invention in that the optical system has a zoom lens containing at least two lens groups separately axially movable by motor power. With the lens groups or lens packages, the imaging scale and/or the working distance and/or the depth of field can be changed or set.
In an advantageous embodiment of the arrangement, a feeler element and/or at least one target assigned thereto is provided for optical position determination in front of the optical system. With the arrangement of the feeler element and/or at least one target, the measuring arrangement in accordance with the invention can operate in two different modes. In the one operating mode, the geometry is measured without contacting the object. In the other mode, the geometry is indirectly optically measured by sensing and deflection of the feeler element. In measurement without feeler element, the zoom lens or vario-lens is set so that the object/measuring plane is located in front of that side of the feeler element facing the optical system, i.e. the feeler element is outside the depth of field of the optical system. The feeler element is “invisible”. If the deflection of the feeler element is used for measurement, then the object plane is moved to the center of the feeler element by means of the zoom lens.
The feeler element is preferably arranged at the end of a flexible glass fiber or light guide feeler pin. The glass fiber feeler pin can be designed with a spherical end. It is also possible to provide the glass fiber feeler pin with at least one target. Light is supplied via the light guide to the end of the pin or to the target(s) and is emitted by the end or by the targets.
It is however also possible to design the feeler element or target as a reflector at or on a pin.
The pin or glass fiber pin is preferably curved to an L-shape, with the section ad

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and arrangement for determining the geometry of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and arrangement for determining the geometry of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and arrangement for determining the geometry of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3301525

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.