Method and apparatus for forming an integrated circuit...

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S332000, C257S333000, C257S375000

Reexamination Certificate

active

06831330

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to the use of electrodes in semiconductor devices, and more particularly relates to the formation of small electrodes having reduced contact areas which may be utilized, for example, in semiconductor memory devices. More specifically, the present invention relates to the manufacture of a small-sized electrode such as is useful to control the size of the active area of a chalcogenide resistive element in a memory cell of a chalcogenide memory device.
Electrodes are used in a variety of integrated circuit devices. In certain devices, such as memory devices, the ability to efficiently manufacture small electrodes is crucial in maximizing the performance and cost-efficiency of the device. A memory device can have a plurality of memory arrays, and each memory array can include hundreds of thousands of memory cells. Each memory cell generally includes a memory element and an access device (such as, for example, a diode) coupled to the memory element. Memory-storage materials, that is, materials that can be made to store information, such as by storing a charge or by changing resistivity, are used to fabricate the memory elements. Electrodes couple each memory element to a corresponding access device. The electrodes can be part of the access device and can also define the memory element.
In certain memory devices, such as memory devices having chalcogenide memory elements, the size of the electrode has a direct relationship to the speed, power requirements, and capacity of the memory device. Chalcogenides are materials which may be electrically stimulated to change states, from an amorphous state to a crystalline state, for example, or to exhibit different resistivities while in the crystalline state. Thus, chalcogenide memory elements can be utilized in memory devices for the storage of binary data, or of data represented in higher-based systems. Such memory cells will typically include a cell accessible, for example, by a potential applied to access lines, in a manner conventionally utilized in memory devices. Typically, the cell will include the chalcogenide element as a resistive element, and will include an access or isolation device coupled to the chalcogenide element. In one exemplary implementation suitable for use in a RAM, the access device may be a diode.
Many chalcogenide alloys may be contemplated for use with the present invention. For example, alloys of tellurium, antimony and germanium may be particularly desirable, and alloys having from approximately to 55-85 percent tellurium and on the order of 15-25 percent germanium are contemplated for use in accordance with the present invention. Preferably, the chalcogenide element will be generally homogeneous (although gradiented alloys may be utilized), and will be alloys formed from tellurium, selenium, germanium, antimony, bismuth, lead, strontium, arsenic, sulfur, silicon, phosphorus, oxygen and mixtures or alloys of such elements. The alloys will be selected so as to establish a material capable of assuming multiple, generally stable, states in response to a stimulus. It is contemplated that in most cases, the stimulus will represent an electrical signal, and that the multiple states will be states of differing electrical resistance. U.S. Pat. No. 5,335,219 is believed to be generally illustrative of the existing state of the art relative to chalcogenide materials, and is believed to provide explanations regarding the current theory of function and operation of chalcogenide elements and their use in memory cells. The specification of U.S. Pat. No. 5,335,219 to Ovshinski et al., issued Aug. 2, 1994, is incorporated herein by reference, for all purposes. An exemplary specific chalcogenide alloy suitable for use in the present invention is one consisting of Te
56
Ge
22
Sb
22
.
An observed property of a chalcogenide element in a memory cell is that the chalcogenide element will have an “active area” which may be less than the area of the entire chalcogenide element. The size of this active area can be controlled by controlling the size of the electrode contact with the chalcogenide element. A primary reason for limiting the active area of the chalcogenide element is that the size of the active area is directly related to the programming current and/or time required to achieve the desired state change. Thus, in the interest of optimally fast programming rates of a memory device, it is desirable to minimize the dimension of electrode contacting the chalcogenide element, to minimize the active area and to thereby facilitate optimally fast programming time and optimally low programming current.
Techniques for forming the electrode of a chalcogenide memory cell include forming a hole in a dielectric layer, and then depositing a conductive material in the hole. Conventional techniques of forming the hole and the insulative layer have included the application of a high current pulse to open a hole having a diameter of on the order of 0.1-0.2 microns. Additional attempts have been made to rely upon photolithography or etching to establish an opening through the insulative layer. All of these methods suffer from technological constraints upon the hole size, and offer less than optimal repeatability.
Accordingly, the present invention provides a new method and apparatus for creating small electrodes, so as, for example, to establish minimally-sized active areas in a chalcogenide layer disposed adjacent to such insulative layer. In a preferred implementation of the invention, the active area of the chalcogenide element can be generally controlled through selection of the electrode size in the insulative layer.
SUMMARY OF THE INVENTION
The present invention comprises an electrode suitable for use in a multi-state memory cell for use in a memory array of a memory device. The electrode includes a base portion and an upper portion. The base portion includes a recessed plug of conductive material configured for electrically coupling to an access device or to an access line. The upper portion includes a cylindrically shaped spacer of an insulative material, the spacer having a center hole, and a contact plug of conductive material, the contact plug placed inside the center hole. The contact plug electrically couples to the base portion and is configured for coupling to a multi-state element.
The electrode can be manufactured by first providing a dielectric volume and then etching an opening within the dielectric volume. The recessed plug of conductive material is then formed within a lower portion of the opening, preferably by chemical vapor deposition (CVD). The spacer is formed, generally by deposition and anisotropic etching, along the sidewalls of an upper portion of the opening. Finally the contact plug is formed within the central hole, preferably by CVD.


REFERENCES:
patent: 3241009 (1966-03-01), Dewald et al.
patent: 3423646 (1969-01-01), Cubert et al.
patent: 3602635 (1971-08-01), Romankiw
patent: 3699543 (1972-10-01), Neale
patent: 3796926 (1974-03-01), Cole et al.
patent: 3877049 (1975-04-01), Buckley
patent: 3886577 (1975-05-01), Buckley
patent: 4099260 (1978-07-01), Lynes et al.
patent: 4115872 (1978-09-01), Bluhm
patent: 4174521 (1979-11-01), Neale
patent: 4180866 (1979-12-01), Shanks
patent: 4194283 (1980-03-01), Hoffmann
patent: 4203123 (1980-05-01), Shanks
patent: 4227297 (1980-10-01), Angerstein
patent: 4272562 (1981-06-01), Wood
patent: 4420766 (1983-12-01), Kasten
patent: 4433342 (1984-02-01), Patel et al.
patent: 4458260 (1984-07-01), McIntyre et al.
patent: 4499557 (1985-02-01), Holmberg et al.
patent: 4502208 (1985-03-01), McPherson
patent: 4502914 (1985-03-01), Trumpp et al.
patent: 4569698 (1986-02-01), Feist
patent: 4630355 (1986-12-01), Johnson
patent: 4641420 (1987-02-01), Lee
patent: 4642140 (1987-02-01), Noufi et al.
patent: 4666252 (1987-05-01), Yaniv et al.
patent: 4677742 (1987-07-01), Johnson
patent: 4757359 (1988-07-01), Chiao et al.
patent: 4795657 (1989-01-01), Formigoni et al.
patent: 4804490 (1989-02-01), Pryor et al.
patent: 4809

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for forming an integrated circuit... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for forming an integrated circuit..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for forming an integrated circuit... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295012

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.