ESD improvement by a vertical bipolar transistor with low...

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S592000, C257S565000, C257S361000, C257S546000, C257S552000, C257S378000

Reexamination Certificate

active

06724050

ABSTRACT:

FIELD OF THE INVENTION
The present invention is related in general to the field of electronic systems and semiconductor devices, and more specifically to structure and fabrication method of a buried n-type layer, resulting in a vertical bipolar transistor with low breakdown voltage and high beta capable of improving ESD protection.
DESCRIPTION OF THE RELATED ART
Integrated circuits (ICs) may be severely damaged by electrostatic discharge (ESD) events. A major source of ESD exposure to ICs is from the charged human body (“Human Body Model”, HBM); the discharge of the human body generates peak currents of several amperes to the IC for about 100 ns. A second source of ESD is from metallic objects (“machine model”, MM); it can generate transients with significantly higher rise times than the HBM ESD source. A third source is described by the “charged device model” (CDM), in which the IC itself becomes charged and discharges to ground in the opposite direction than the HBM and MM ESD sources. More detail on ESD phenomena and approaches for protection in ICs can be found in A. Amerasekera and C. Duvvury, “ESD in Silicon Integrated Circuits” (John Wiley & Sons LTD. London 1995), and C. Duvvury, “ESD: Design for IC Chip Quality and Reliability” (Int. Symp. Quality in El. Designs, 2000, pp. 251-259; references of recent literature).
ESD phenomena in ICs are growing in importance as the demand for higher operating speed, smaller operating voltages, higher packing density and reduced cost drives a reduction of all device dimensions. This generally implies thinner dielectric layers, higher doping levels with more abrupt doping transitions, and higher electric fields—all factors that contribute to an increased sensitivity to damaging ESD events.
The most common protection schemes used in metal-oxide-semiconductor (MOS) ICs rely on the parasitic bipolar transistor associated with an NMOS device whose drain is connected to the pin to be protected and whose source is tied to ground. The protection level or failure threshold can be set by varying the NMOS device width from the drain to the source under the gate oxide of the NMOS device. Under stress conditions, the dominant current conduction path between the protected pin and ground involves the parasitic bipolar transistor of that NMOS device. This parasitic bipolar transistor operates in the snapback region under pin positive with respect to ground stress events.
The dominant failure mechanism, found in the NMOS protection device operating as a parasitic bipolar transistor in snapback conditions, is the onset of second breakdown. Second breakdown is a phenomenon that induces thermal runaway in the device wherever the reduction of the impact ionization current is offset by the thermal generation of carriers. Second breakdown is initiated in a device under stress as a result of self-heating. The peak NMOS device temperature, at which second breakdown is initiated, is known to increase with the stress current level.
Many circuits have been proposed and implemented for protecting ICs from ESD. One method that is used to improve ESD protection for ICs is biasing the substrate of ESD protection circuits on an IC. Such substrate biasing can be effective at improving the response of a multi-finger MOS transistor that is used to conduct an ESD discharge to ground. However, substrate biasing can cause the threshold voltages for devices to change from their nominal values, which may affect device operation. In addition, substrate biasing under steady-state conditions causes heat generation and increases power losses.
Solutions offered in known technology require additional IC elements, silicon real estate, and/or process steps (especially photomask alignment steps). Their fabrication is, therefore, expensive. Examples of device structures and methods are described in U.S. Pat. No. 5,539,233, issued Jul. 23, 1996 (Amerasekera et al., “Controlled Low Collector Breakdown Voltage Vertical Transistor for ESD Protection Circuits”); U.S. Pat. No. 5,793,083, issued Aug. 11, 1998 (Amerasekera et al., “Method for Designing Shallow Junction, Salicided NMOS Transistors with Decreased Electrostatic Discharge Sensitivity”); U.S. Pat. No. 5,940,258, issued Aug. 17, 1999 (Duvvury, “Semiconductor ESD Protection Circuit”); U.S. Pat. No. 6,137,144, issued Oct. 24, 2000, and U.S. Pat. No. 6,143,594, issued Nov. 7, 2000 (Tsao et al, “On-Chip ESD Protection in Dual Voltage CMOS); and U.S. patent application Ser. No. 09/456,036, filed Dec. 3, 1999 (Amerasekera et al., “Electrostatic Discharge Device and Method”).
The influence of substrate well profiles on the device ESD performance is investigated, for instance, in “Influence of Well Profile and Gate Length on the ESD Performance of a Fully Silicided 0.25 &mgr;m CMOS Technology” (K. Bock, C. Russ, G. Badenes, G. Groeseneken and L. Deferm, Proc. EOS/ESD Symp., 1997, pp. 308-315). However, known technology recommends only a lower epitaxial doping or a lower implant dose as methods to increase the p-well resistance.
The challenge of cost reduction implies a drive for minimizing the number of process steps, especially a minimum number of photomask steps, and the application of standardized process conditions wherever possible. Furthermore, the silicon area consumed by ESD protection devices should be kept to a minimum. An urgent need has, therefore, arisen for a coherent, low-cost method of enhancing ESD insensitivity without the need for additional, real-estate consuming protection devices. The device structure should further provide excellent electrical performance, mechanical stability and high reliability. The fabrication method should be simple, yet flexible enough for different semiconductor product families and a wide spectrum of design and process variations. Preferably, these innovations should be accomplished without extending production cycle time, and using the installed equipment, so that no investment in new manufacturing machines is needed.
SUMMARY OF THE INVENTION
A vertical bipolar transistor is described having low breakdown voltage, low ESD clamping voltage and high beta. The transistor is fabricated in a semiconductor of a first conductivity type, which has a buried layer of the opposite conductivity type with sharp junctions, suitable as collector. This layer extends laterally to deep wells of the opposite conductivity type, thus isolating the subsurface band of the semiconductor of the first conductivity type. This band is suitable as the base and has a width controlled by the proximity of the buried layer junction. The emitter is supplied by a surface region of the opposite conductivity type.
The buried layer extends vertically from the surface beginning at a level more shallow than the depth of the dielectric isolation zone, which surrounds the transistor at least in part. The layer extends to a depth greater than the depth of this dielectric zone, thereby electrically isolating the base and emitter of the vertical transistor.
It is an essential aspect of the invention to use the photomask step, which is needed for implanting the low energy ions in order to create the extended emitter, for the additional process step of implanting at high energy and high dose the ions needed (opposite conductivity type) to create the buried layer. This economical feature renders the additional high-energy ion implant step and thus the formation of an electrically isolated high-voltage I/O transistor exceedingly inexpensive.
Another aspect of the invention is that an additional implant step of ions of the fist conductivity type, also of high energy, but low dose, may be added for the same photomask window in order to carefully control location, peak and depth of the buried layer. This feature provides precise control of the transistor base width and thus beta.
Another aspect of the invention is that the high energy/high dose ion implant step transforms the electrically isolated band of the first conductivity type into a region of higher resistivity compared to the remainder of the semiconductor material of the first con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

ESD improvement by a vertical bipolar transistor with low... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with ESD improvement by a vertical bipolar transistor with low..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ESD improvement by a vertical bipolar transistor with low... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3234598

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.