Systems and methods for forming refractory metal nitride...

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S643000, C438S648000, C438S653000, C438S656000, C438S680000, C438S685000, C438S765000, C438S775000, C438S785000

Reexamination Certificate

active

06794284

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to methods of forming refractory metal nitride layers (including silicon nitride layers) on substrates using a vapor deposition process with a refractory metal halide (preferably, fluoride) precursor compound, a disilazane, and optionally a silicon precursor compound. The formed refractory metal (silicon) nitride layers are particularly useful as diffusion barriers for polysilicon substrates to reduce diffusion of oxygen, copper, or silicon.
BACKGROUND OF THE INVENTION
In integrated circuit manufacturing, microelectronic devices such as capacitors are the basic energy storage devices in random access memory devices, such as dynamic random access memory (DRAM) devices, static random access memory (SRAM) devices, and ferroelectric memory (FERAM) devices. Capacitors typically consist of two conductors acting as electrodes, such as parallel metal (e.g., platinum) or polysilicon plates, that are insulated from each other by a layer of dielectric material.
Historically, silicon dioxide has generally been the dielectric material of choice for capacitors. However, the continuous shrinkage of microelectronic devices over the years has led to dielectric layers approaching only 10 Å in thickness (corresponding to 4 or 5 molecules). To reduce current tunneling through thin dielectric layers, high dielectric metal-containing layers, such as Al
2
O
3
, TiO
2
, ZrO
2
HfO
2
, Ta
2
O
5
, (Ba,Sr)TiO
3
. Pb(Zr,Ti)O
3
and SrBi
2
Ti
2
O
9
, have been developed to replace SiO
2
layers. However, these metal-containing layers can provide high leakage paths and channels for oxygen diffusion, especially during annealing. Also, an undesirable interfacial layer of SiO
2
is frequently created by oxidation of polysilicon during the annealing of the dielectric layer.
One way to address these problems is to deposit a thin, conductive, amorphous, metal nitride barrier layer on the substrate prior to the deposition of the thin resistive metal oxide layer. For example, reactive metal silicon nitride barrier metal layers are used to protect polysilicon from oxygen diffusion prior to applying very thin (i.e., less than 10 Å) barium strontium titanate dielectric films.
Refractory metal nitrides and refractory metal silicon nitrides, such as titanium nitride (Ti—N), tantalum nitride (Ta—N), tungsten nitride (W—N), molybdenum nitride (Mo—N), titanium silicon nitride (Ti—Si—N), tantalum silicon nitride (Ta—Si—N) and tungsten silicon nitride (W—Si—N), are also useful as conductive barrier layers between silicon substrates and copper interconnects to reduce copper diffusion. This copper diffusion has led to degradation of device reliability, causing semiconductor manufacturers to turn toward other less conductive metals, such as aluminum and tungsten.
Further improvements in high temperature adhesion and diffusion resistance can be realized when about 4 to about 30 atom % silicon is incorporated to form a more amorphous metal silicon nitride layer. Examples of refractory metal silicon nitrides that are useful as barrier layers include tantalum silicon nitride (Ta—Si—N), titanium silicon nitride (Ti—Si—N), and tungsten silicon nitride (W—Si—N).
Methods for using physical vapor deposition (PVD) methods, such as reactive sputtering, to form Ta—Si—N barrier layers are known. Hara et al., “Barrier Properties for Oxygen Diffusion in a TaSiN Layer,” Jpn J. Appl.-Phys., 36(7B), L893 (1997) describe noncrystalline, low resistivity Ta—Si—N layers that acts as a barrier to oxygen diffusion during high temperature annealing at 650° C. in the presence Of O
2
. The Ta—Si—N layers are formed by using radio-frequency reactive sputtering with pure Ta and Si targets on a 100 nm thick polysilicon layer. Layers having relatively low silicon content, such as Ta
50
Si
16
N
34
. are stated to have a desirable combination of good diffusion barrier resistance along with low sheet resistance. These Ta—Si—N barrier layers have improved peel resistance over Ta—N barrier layers during annealing conditions.
Lee et al., “Structural and chemical stability of Ta—Si—N thin film between Si and Cu,” Thin Solid Films, 320 :141-146 (1998) describe amorphous, ultra-thin (i.e., less than 100 Å) tantalum-silicon-nitrogen barrier films between silicon and copper interconnection materials used in integrated circuits. These barrier films suppress the diffusion of copper into silicon, thus improving device reliability. Barrier films having compositions ranging from Ta
43
Si
04
N
53
to Ta
60
Si
11
N
29
were deposited on silicon by reactive sputtering from Ta and Si targets in an Ar/N
2
discharge, followed by sputter-depositing copper films.
However, when PVD methods are used, the stoichiometric composition of the formed metal nitride and metal silicon nitride barrier layers such as Ta—N and Ta—Si—N can be non-uniform across the substrate surface due to different sputter yields of Ta, Si, and N. Due to the resulting poor layer conformality, defects such as pinholes often occur in such layers creating pathways to diffusion. As a result, the effectiveness of a physically deposited diffusion barrier layer is dependent on the layer being sufficiently thick.
Vapor deposition processes such as chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes are preferable to PVD processes in order to achieve the most efficient and uniform barrier layer coverage of substrate surfaces. There remains a need for a vapor deposition process to form refractory metal nitrides and refractory metal silicon nitride barrier layers (especially Ta—N and Ta—Si—N layers) on substrates, such as semiconductor substrates or substrate assemblies.
SUMMARY OF THE INVENTION
This invention is directed to methods of using vapor deposition processes to deposit refractory metal (silicon) nitride layers (i.e., refractory metal nitride and refractory metal silicon nitride layers) on substrates. The process involves combining one or more refractory metal halide precursor compounds, one or more nitrogen precursor compounds (disilazanes), and optionally one or more silicon precursor compounds.
In one embodiment, the present invention provides a method of forming a layer on a substrate (preferably, in a process of manufacturing a semiconductor structure). The method includes: providing a substrate (preferably a semiconductor substrate or substrate assembly such as a silicon wafer); providing a vapor that includes one or more refractory metal precursor compounds of the formula MY
n
(Formula I), wherein M is a refractory metal (e.g., Ti, Nb, Ta, Mo, and W), each Y is independently a halogen atom (preferably, F, Cl, I, or combinations thereof, and more preferably, F), and n is an integer selected to match the valence of the metal M (e.g., n=5 when M=Ta); providing a vapor that includes one or more disilazanes of the formula (R)
x
H
3-x
SiNHSi(R)
x
H
3-x
, wherein each R is independently an organic group, and x is 1 to 3; and directing the vapors that include the one or more refractory metal precursor compounds and the one or more disilazanes to the substrate to form a refractory metal nitride layer (e.g., tantalum nitride) on one or more surfaces of the substrate. The resultant nitride layer (or silicon nitride layer) is typically suitable for use as a diffusion barrier layer, which is particularly advantageous when the substrate includes a silicon-containing surface.
The present invention also provides a method of manufacturing a memory device. The method includes: providing a substrate (preferably a semiconductor substrate or substrate assembly) that includes a silicon-containing surface; providing a vapor that includes one or more refractory metal precursor compounds of the formula MY
n
(Formula I), wherein M is a refractory metal, each Y is independently a halogen atom, and n is an integer selected to match the valence of the metal M; directing the vapor that includes the one or more precursor compounds of the Formula I to the substrate and allowing the one or more compounds to chemisorb on the silicon-co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for forming refractory metal nitride... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for forming refractory metal nitride..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for forming refractory metal nitride... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3216713

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.