Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material
Reexamination Certificate
2001-11-27
2003-11-11
Everhart, Caridad (Department: 2825)
Semiconductor device manufacturing: process
Coating with electrically or thermally conductive material
To form ohmic contact to semiconductive material
C438S050000, C438S053000, C438S648000, C438S622000, C438S008000, C438S637000, C438S625000, C438S506000, C438S419000
Reexamination Certificate
active
06645855
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method for fabricating an integrated semiconductor product, in particular to a method for fabricating an integrated semiconductor memory.
When fabricating nonvolatile memories, known as FeRAMs or DRAMs with high-&egr; materials, ferromagnetic materials, such as Pb(ZrTi)O
3
(PZT), strontium bismuth tantalate (SBT), or barium strontium titanate (BST), are used for the “dielectric” of the capacitors. These materials are deposited between two platinum electrodes. The deposition may take place using metal organic deposition (MOD), using metal organic chemical vapor deposition (MOCVD), or using a sputtering process. The ferroelectric storage capacitors are produced at a time at which in general the select transistors in the memory cells and the logic transistors in the periphery of the memory component have already been completely fabricated.
All the ferroelectric layers still must be “conditioned” after the deposition, which is achieved, for example, by tempering for one hour at approximately 600° to 800° C. in oxygen. During this conditioning step, by way of example, bismuth, barium, and strontium diffuse through the platinum electrode and the oxide layers below. At these temperatures, platinum also diffuses into/through the surrounding oxide and through the polysilicon connection below.
Barrier layers that are applied to the polysilicon plug (titanium nitride, tantalum nitride, iridium, iridium oxide, molybdenum silicide, etc.) are intended to prevent the polysilicon connection from being contaminated or even, under extreme circumstances, the formation of platinum silicide. Furthermore, silicon can be counterdoped by platinum or an introduced doping can be greatly reduced.
If platinum diffuses into the bulk silicon, the service life of the corresponding components can be reduced by orders of magnitude. Relatively high levels of platinum impurities (i.e. impurities of more than 10
14
at/cm
2
), may lead to total failure of the transistors that have already been produced. As well as process-related contamination, cross-contamination caused by the equipment itself (vacuum forceps, support plates, chucks, plasma processors, etc.) also occurs and contaminates the wafer back surface to the extent of >>5×10
12
at/cm
2
. It is known from the literature that even minor contamination in the region of 10
13
at/cm
2
, which corresponds to 10
14
at/cm
3
for a wafer thickness of 1 mm, has a targeted influence on the electrical properties of components.
Because platinum very quickly diffuses interstitially at temperatures of less than 500° C. but can only become electrically active if there are “holes” in the silicon, the contamination is in actual fact greater than that which can be determined indirectly by electrical measurements. Since “holes” occur close to the surface, a “well profile” is measured through the wafer thickness, with considerably higher concentrations of platinum toward the surfaces. The platinum that is not yet electrically active acts as source from which platinum can “rediffuse” even at temperatures below 500° C.
In addition, the problem arises during manufacture that the wafer back surfaces are exposed during the build-up of the capacitors; therefore, all elements can pass directly or indirectly onto/into the silicon surface. Wafers with slight back-surface damage are used in the ferro process. This damage layer may take up approximately one order of magnitude of the contamination.
Complex attempts at cleaning on silicon wafers with controlled contamination (spin-on solutions) have shown that, in particular, platinum can no longer be removed from the silicon surface. What occurs is a type of further accumulation. On silicon wafers with controlled contamination, after removal of up to 5 &mgr;m of silicon it was always possible to measure the same contamination level of >3×10
12
at/cm
2
of platinum. Even complex-forming agents admixed with the etching solutions did not achieve the desired result.
Wet cleaning steps could remove all the other elements listed above. Accordingly, the levels of these elements were reduced to the detection limit. Iridium, which is next to platinum in the periodic system, is also difficult to remove. It is highly soluble in silicon oxide but diffuses more slowly than platinum in silicon, particularly at relatively low temperatures.
The contamination to the wafer back surface has hitherto been limited by using a nitride cap on the wafer back surface.
FIG. 1A
shows an integrated semiconductor product
1
in which a silicon nitride layer or cap
3
has been applied to the back surface of the silicon wafer
2
. The nitride cap
3
, which also forms on the wafer front surface
9
on account of process conditions, must be etched off the wafer front surface
9
again. This causes considerable thinning of the nitride cap
3
on the wafer edge
4
.
FIG. 1B
shows the back surface cap
3
after an etching step for removal of the cap on the front surface. After an etching step has been completed, the wafer edge
4
is exposed.
FIG. 1C
shows that further thinning/drawing back of the protective layer occurs after a plurality of etching steps. Consequently, an increasingly large Si wafer edge region
4
is exposed.
When using other silicon nitride back-etching installations (e.g. the LAM tool), although it is possible to considerably improve the thinning of the cap
3
on the wafer edge
4
, the silicon wafer edge
4
is nevertheless exposed again after a plurality of back-surface cleaning steps using HF/HNO
3
. As described above, at this location platinum can accumulate/diffuse in and cause considerable damage to the components that have already been produced, for example transistors, on the wafer front surface.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method for fabricating an integrated semiconductor product that overcomes the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and that reduces the contamination of the wafer back surface or eliminates it altogether.
With the foregoing and other objects in view, there is provided, in accordance with the invention, a method for fabricating an integrated semiconductor product. The first step is providing a semiconductor wafer that has previously-produced semiconductor components. The next step is forming at least one connection, in particular a polysilicon connection. The next step is exposing the at least one connection from the wafer front surface. The next step is applying a protective layer, in particular a silicon nitride protective layer, to the wafer surface. The next step is treating the wafer front surface with a chemical mechanical polishing (CMP) step, with the result that the at least one connection is made accessible again.
Therefore, after the deposition of the protective layer, all that remains is for a CMP step to be conducted on the wafer front surface. This step does not cause any change to the nitride cap on the wafer edge. This concluding CMP step avoids the need to etch the wafer front surface until it is clear. As a result, the nitride cap is not thinned at the wafer edge. Therefore, the wafer back surface remains protected against contamination in subsequent steps.
In the method according to the invention, prior to the deposition of the protective layer (protective layer sheathing) on the wafer front surface, the connections, in particular the polysilicon plug connections, are exposed. According to a preferred embodiment, back-etching of the wafer surface exposes the connections. In this case, preferably a silicon oxide layer of the wafer surface is back-etched between the polysilicon connections. This back-etching of the wafer surface can in principle be effected using all fluoride-containing, acidic etching mixtures. According to a preferred embodiment, the back-etching is effected by dilute hydrofluoric acid or BHF. Silicon of any type is very soluble in these acidic, fluoride-containing etch
Everhart Caridad
Greenberg Laurence A.
Infineon - Technologies AG
Mayback Gregory L.
Stemer Werner H.
LandOfFree
Method for fabricating an integrated semiconductor product does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method for fabricating an integrated semiconductor product, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for fabricating an integrated semiconductor product will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3185084