Zoom lens barrel assembly

Optical: systems and elements – Lens – With variable magnification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Other Related Categories

C359S700000, C359S829000

Type

Reexamination Certificate

Status

active

Patent number

06522482

Description

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a zoom lens barrel assembly, and in particular, to a multi-stage-extension zoom lens barrel assembly having a lens barrier.
2. Description of the Related Art
There are concurrent needs to increase magnification of camera zoom lenses and to miniaturize them. For this reason, modern zoom lenses are constructed as a multi-stage-extension zoom lens barrel assembly. A multi-stage-extension zoom lens barrel assembly employs a helicoid structure or a cam structure to connect barrels and allow them to move relative to one another. Although the cam structure permits a high degree of freedom in terms of how much a lens barrel can extend outwards for a predetermined rotation angle of the barrel, it is difficult to ensure rigidity and light-blocking performance of the lens barrel with this structure. However, the helicoid structure ensures rigidity and light-blocking performance of the lens barrel although this structure allows the lens barrel to extend outward only by a fixed amount for a predetermined rotation angle of the barrel. For this reason, the helicoid structure is considered more suitable for use in multi-stage extension lens barrel assemblies.
A typical zoom lens barrel assembly includes a lens barrier on the frontmost end thereof. This lens barrier is opened and closed by making use of relative movement between the frontmost barrel having the lens barrier and an adjacent barrel. When there are many stages (sub-barrels) in a barrel assembly, however, the relative displacement between the lens barrels may become too small to provide sufficient stroke length required for the opening/closing of the lens barrier. In particular, in the case of a wide-angle zoom lens, in which the optical system has a small length at the wide-angle extremity, displacement of the lens barrel assembly from its retracted position, where the length of the barrel assembly and thus the length of the optical system are smallest, to the wide-angle extremity is small. If helicoid structures are used in such a zoom lens barrel assembly, leads of the helicoids of each barrel need to be close to each other in order to effectively make use of the length of the zoom lens barrel. This makes displacement of each lens barrel substantially equal to one another. As a result, sufficient stroke length required for the opening/closing of the lens barrier cannot be achieved.
To cope with above problems, only the frontmost lens barrel is constructed to have a cam structure so that the frontmost lens barrel extends outward by a larger amount for a small rotation angle and causes the other lens barrels to extend only by a small amount. While sufficient stroke can be achieved, the lead for advancing the frontmost lens barrel to open the lens barrier becomes too large. This can cause too large a resistance when the lens barrel is retreated, which affects the strength of the lens barrel. In addition, if only the frontmost lens barrel extends outward by a large amount, tension is undesirable exerted on a flexible printed board, which connects a shutter unit mounted on the frontmost lens barrel to a circuit board in a camera body.
As an alternative approach, the other lens barrels that are connected to the frontmost lens barrel can be each constructed to have a cam structure in order to provide a section or sections that allow the zoom lens barrel to extend outward only by a small amount, or do not extend outward at all, when the barrels are rotated. In this construction, the sufficient stroke length for the opening/closing of the lens barrier is provided within a rotation range between the retracted position and the wide-angle extremity. Such cam structures, however, make it difficult to ensure sufficient rigidity of the zoom lens barrel assembly. It should be noted that the rearmost lens barrel cannot be constructed as a cam structure since the driving force needs to be transmitted through gears to the first lens barrel.
SUMMARY OF THE INVENTION
In view of the above-described drawbacks of the conventional lens barrel assemblies, the present invention provides a novel zoom lens barrel assembly structure that not only enhances the rigidity of multi-stage-extension zoom lens barrel, but also provides a sufficient stroke length needed for the opening/closing of a lens barrier.
For example, a zoom lens barrel assembly is provided, including a plurality of lens barrels including a rearmost lens barrel, secured to a camera body, and a frontmost lens barrel. At least two adjacent lens barrels, of the plurality of lens barrels arranged between the camera body and the frontmost lens barrel, are connected to each other via a helicoid structure. The frontmost lens barrel and a first adjacent lens barrel are connected to each other via a cam structure. The helicoid structure allows the at least two adjacent lens barrels to rotate and move in an optical axis direction relative to each other while the zoom lens barrel assembly moves from a retracted position to a minimally extended position for a photographing operation. At least a portion of the helicoid structure includes a slip region which allows the at least two adjacent lens barrels to rotate without relatively moving along the optical axis.
A barrier mechanism can be provided on the frontmost lens barrel, the barrier mechanism being opened and closed via movement of the frontmost lens barrel in the optical axis direction as the zoom lens barrel assembly moves between the retracted position and the minimally extended position, and by relative rotation of the at least two adjacent lens barrels via the slip region.
It is desirable for the first adjacent lens barrel connected to the frontmost lens barrel via the cam structure to be connected to a second adjacent lens barrel via a second helicoid structure which causes the connected the first and second adjacent lens barrels to rotate and move along the optical axis relative to each other as the zoom lens barrel assembly moves from the retracted position to the minimally extended position, the second helicoid structure also including a slip region which allows the first adjacent lens barrel and the second adjacent lens barrel to rotate without relatively moving along the optical axis.
In another embodiment, a four-stage-extension zoom lens barrel is provided, including a first barrel connected to a fixed barrel secured to a camera body, the first barrel being movable so as to retreat and advance relative to the fixed barrel; a second barrel connected to the first barrel; a third barrel connected to the second barrel; a frontmost fourth barrel connected to the third barrel; wherein the first, second, and third barrels are each supported, and are movable in an optical axis direction, via a helicoid structure. The frontmost fourth barrel and the third barrel are connected to each other by a cam structure so as to be movable in an optical axis direction. A barrier mechanism is provided on the frontmost fourth barrel. The helicoid structures for moving the second barrel and the third barrel in the optical axis direction each allow the second and the third barrels to rotate and relatively move in the optical axis direction as the zoom lens barrel moves between a retracted position and a minimally extended position for a photographing operation, each the helicoid structure having a slip region which allows the second and third barrels to rotate without relatively moving in the optical axis direction. The barrier mechanism is opened and closed by a relative movement of the third barrel and the frontmost fourth barrel in the optical axis direction as the slip sections allow the second and the third barrels to rotate.
It is desirable for the fourth barrel to be connected to the third barrel via the cam structure so that the fourth barrel moves in the optical axis direction relative to the third barrel without rotating, and the barrier mechanism to be opened and closed by the relative movement of the third barrel and the fourth barrel in the optical axis direction

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Zoom lens barrel assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Zoom lens barrel assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zoom lens barrel assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3123061

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.