Optimization methods for the insertion, protection, and...

Image analysis – Applications

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S176000

Reexamination Certificate

active

06522767

ABSTRACT:

This application is also related to U.S. Pat. No. 5,428,606, “Digital Information Commodities Exchange”, issued on Jun. 27, 1995, which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
The present invention relates to digital watermarks.
Digital watermarks exist at a convergence point where creators and publishers of digitized multimedia content demand localized, secured identification and authentication of that content. Because existence of piracy is clearly a disincentive to the digital distribution of copyrighted works, establishment of responsibility for copies and derivative copies of such works is invaluable. In considering the various forms of multimedia content, whether “master,” stereo, NTSC video, audio tape or compact disc, tolerance of quality degradation will vary with individuals and affect the underlying commercial and aesthetic value of the content. It is desirable to tie copyrights, ownership rights, purchaser information or some combination of these and related data to the content in such a manner that the content must undergo damage, and therefore a reduction in value, with subsequent, unauthorized distribution of the content, whether it be commercial or otherwise.
Legal recognition and attitude shifts, which recognize the importance of digital watermarks as a necessary component of commercially distributed content (audio, video, game, etc.), will further the development of acceptable parameters for the exchange of such content by the various parties engaged in the commercial distribution of digital content. These parties may include artists, engineers, studios, INTERNET access providers, publishers, agents, on-line service providers, aggregators of content for various forms of delivery, on-line retailers, individuals and parties that participate in the transfer of funds to arbitrate the actual delivery of content to intended parties.
Since the characteristics of digital recordings vary widely, it is a worthwhile goal to provide tools to describe an optimized envelope of parameters for inserting, protecting and detecting digital watermarks in a given digitized sample (audio, video, virtual reality, etc.) stream. The optimization techniques described hereinafter make unauthorized removal of digital watermarks containing these parameters a significantly costly operation in terms of the absolute given projected economic gain from undetected commercial distribution. The optimization techniques, at the least, require significant damage to the content signal, as to make the unauthorized copy commercially worthless, if the digital watermark is removed, absent the use of extremely expensive tools.
Presumably, the commercial value of some works will dictate some level of piracy not detectable in practice and deemed “reasonable” by rights holders given the overall economic return. For example, there will always be fake $100 bills, LEVI jeans, and GUCCI bags, given the sizes of the overall markets and potential economic returns for pirates in these markets—as there also will be unauthorized copies of works of music, operating systems (Windows95, etc.), video and future multimedia goods.
However, what differentiates the “digital marketplace” from the physical marketplace is the absence of any scheme that establishes responsibility and trust in the authenticity of goods. For physical products, corporations and governments mark the goods and monitor manufacturing capacity and sales to estimate loss from piracy. There also exist reinforcing mechanisms, including legal, electronic, and informational campaigns to better educate consumers.
SUMMARY OF THE INVENTION
The present invention relates to implementations of digital watermarks that are optimally suited to particular transmission, distribution and storage mediums given the nature of digitally-sampled audio, video, and other multimedia works.
The present invention also relates to adapting watermark application parameters to the individual characteristics of a given digital sample stream.
The present invention additionally relates to the implementation of digital watermarks that are feature-based. That is, a system where watermark information is not carried in individual samples, but is carried in the relationships between multiple samples, such as in a waveform shape. The present invention envisions natural extensions for digital watermarks that may also separate frequencies (color or audio), channels in 3D while utilizing discreteness in feature-based encoding only known to those with pseudo-random keys (i.e., cryptographic keys) or possibly tools to access such information, which may one day exist on a quantum level.
The present invention additionally relates to a method for obtaining more optimal models to design watermark systems that are tamper-resistant given the number and breadth of existent digitized-sample options with differing frequency and time components (audio, video, pictures, multimedia, virtual reality, etc.).
To accomplish these goals, the present invention maintains the highest quality of a given content signal as it was mastered, with its watermarks suitably hidden, taking into account usage of digital filters and error correction presently concerned solely with the quality of content signals.
The present invention additionally preserves quality of underlying content signals, while using methods for quantifying this quality to identify and highlight advantageous locations for the insertion of digital watermarks.
The present invention integrates the watermark, an information signal, as closely as possible to the content signal, at a maximal level, to force degradation of the content signal when attempts are made to remove the watermarks.
The present invention relates to a method for amplitude independent encoding of digital watermark information in a signal including steps of determining in the signal a sample window having a minimum and a maximum, determining a quantization interval of the sample window, normalizing the sample window, normalizing the sample window to provide normalized samples, analyzing the normalized samples, comparing the normalized samples to message bits, adjusting the quantization level of the sample window to correspond to the message bit when a bit conflicts with the quantization level and de-normalizing the analyzed samples.
The present invention also relates to a method for amplitude independent decoding of digital watermark information in a signal including steps of determining in the signal a sample window having a minimum and a maximum, determining a quantization interval of the sample window, normalizing the sample window to provide samples, and analyzing the quantization level of the samples to determine a message bit value.
The present invention additionally relates to a method of encoding and decoding watermarks in a signal where, rather than individual samples, insertion and detection of abstract signal features to carry watermark information in the signal is-done.
The present invention also relates to a method for pre-analyzing a digital signal for encoding digital watermarks using an optimal digital filter in which it is determined what noise elements in the digital signal will be removed by the optimal digital filter based on response characteristics of the filter.
The present invention also relates to a method of error coding watermark message certificates using cross-interleaved codes which use error codes of high redundancy, including codes with Hamming distances of greater than or equal to “n”, wherein “n” is a number of bits in a message block.
The present invention additionally relates to a method of preprocessing a watermark message certificate including a step of determining an absolute bit length of the watermark message as it will be encoded watermark pseudo-random key bits using a non-linear (chaotic) generator or to a method of mapping pseudo-random key and processing state information to affect an encode/decode map using a non-linear (chaotic) generator.
The present invention additionally relates to a method of guaranteeing watermark

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optimization methods for the insertion, protection, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optimization methods for the insertion, protection, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimization methods for the insertion, protection, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3121374

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.