Static information storage and retrieval – Read/write circuit – Data refresh
Reexamination Certificate
2002-01-10
2003-04-29
Lebentritt, Michael S. (Department: 2824)
Static information storage and retrieval
Read/write circuit
Data refresh
C365S189020, C365S236000
Reexamination Certificate
active
06556497
ABSTRACT:
TECHNICAL FIELD
The invention relates to dynamic random access memories (“DRAMs”) and, more particularly, to a system and method for optimally controlling the refresh and addressing of DRAMs operating in either a full density mode or a reduced density mode, such as a half density mode.
BACKGROUND OF THE INVENTION
DRAMs use one or more arrays of memory cells arranged in rows and columns. Each of the rows of memory cells is activated by a corresponding row line, which is selected from a row address. A pair of complementary digit lines are provided for each column of the array, and a sense amplifier coupled to the digit lines for each column is enabled responsive to a respective column address. The sense amplifier senses a small voltage differential between the digit lines and amplifies such voltage differential. In a “folded digit line” memory architecture, the complementary digit lines extend through the same array. In the typical folded digit line architecture, the memory cells in the odd rows are coupled to one of the digit lines in each column, and the memory cells in the even rows are coupled to the other of the digit lines in each column. However, other connection arrangements are also possible. In a folded digit line architecture, a sense amplifier senses a voltage differential between a high voltage level coupled to a digit line by a memory cell in an one row and a low voltage level coupled to a complementary digit line by a memory cell in a different row as either a logic “1” or a logic “0”.
Both digit lines of each column are typically precharged to one-half the supply voltage V
CC
, a voltage known as “DVC2,” prior to being coupled to a memory cell. Coupling the memory cell to the digit line causes the voltage on the digit line to increase slightly above DVC
2
or decreased slightly below DVC
2
. The sense amplifier compares this altered voltage to the voltage DVC
2
on the complementary digit line and then drives the digit line coupled to the memory cell to the full high or low logic level, thereby restoring the voltage on the memory cell to the voltage corresponding to the logic level stored in the memory cell. The logic level stored in the memory cell can then be read by determining the differential voltage between the digit lines.
As is well-known in the art. DRAM memory cells must be periodically refreshed to avoid a loss of data. The memory cells in a row can be refreshed by simply coupling the memory cells in the row to one of the digit lines after enabling the sense amplifiers. The sense amplifiers then restore the voltage level on the memory cell capacitor to a voltage level corresponding to the stored data bit. The permissible time between refreshes without losing data depends upon a variety of factors, including the rate at which charge is dissipated in memory cell capacitors. When a memory cell capacitor is excessively discharged from a high logic level, generally equal to the supply voltage, V
CC
, or excessively charged from a low logic level, generally ground, its logic level of can no longer be accurately read.
One problem with conventional DRAMs results from individual memory cells becoming defective such as, for example, as a result of a shorted memory cell capacitor. A memory access to a defective memory cell must be redirected to a different memory cell so that data will be accurately read from a DRAM. Redundant rows and columns of memory cells are typically provided for this purpose. However, a substantial amount of an additional circuitry must be provided to redirected memory accesses to redundant memory cells.
One approach to solving this defective memory cell problems is disclosed in U.S. Pat. No. 6,044,029, which is incorporated herein by reference. As described therein, memory cells are effectively “repaired” by writing data bits to and reading data bits from a column of memory cells by coupling two memory cells in respective rows to the same digit line or different digit lines for that column. Thus, for example, the memory cell in an even row is coupled to a digit line and the memory cell in an odd row is coupled to the complimentary digit line. If one of the memory cells is defective, the charge from the non-defective memory cell can change the voltage on the digit line to be detected by the sense amplifier. Although using two memory cells to store in each bit of data provides the advantage discussed above, it has the disadvantage of reducing the capacity of a memory array by 50 percent.
Another disadvantage of operating in a half density mode as described in U.S. Pat. No. 6,044,029 stems from the difficulty of interfacing the DRAM to computer circuitry when the DRAM is operating in the half density mode. A conventional dual mode, half density/full density 128 MB synchronous DRAM (“SDRAM”) is organized into 4 banks each having 4096 rows and 1024 columns. When this conventional 128 MB SDRAM is operating in the half density mode, it is organized into 4 banks each having 4096 rows and only 512 columns. Thus, when operating in the full density mode, there will be 12 bits of row address RA
0
-RA
11
and 10 bits of column address CA
0
-CA
9
. When operating in the half density mode, there will still be 12 bits of row address RA
0
-RA
11
but only 9 bits of column address CA
0
-CA
8
. However, the SDRAM described in U.S. Pat. No. 6,044,029 operates in the half density mode in a manner that is different from the operation of conventional dual mode SDRAMs. The SDRAM described in U.S. Pat. No. 6,044,029 has the same addressing configuration as the conventional SDRAM when operating in the full density mode, i.e., 12 bits of row address RA
0
-RA
11
and 10 bits of column address CA
0
-CA
9
. However, when operating in the half density mode, the SDRAM described in U.S. Pat. No. 6,044,029 has the same number of column address bits, i.e., 10 column address bits CA
0
-CA
9
, but half as many row address bits, i.e., 11 row address bits RA
0
-RA
10
, since 2 rows of memory cells are used to store each row of data. As a result, systems designed to operate with conventional SDRAMs operating in a half density mode provide RA
0
-RA
11
row address bits and CA
0
-CA
8
column address bits rather than the RA
0
-RA
10
row address bits and the CA
0
-CA
9
column address bits required by SDRAMs of the type described in U.S. Pat. No. 6,044,029. For this reason, it can be difficult to interface SDRAMs of the type described in U.S. Pat. No. 6,044,029 to systems that have been designed for conventional dual mode SDRAMs.
There is therefore a need for solutions to the above-described problems with and limitations of DRAM's of the type described in U.S. Pat. No. 6,044,029, thus improving the usefulness of such DRAM's.
SUMMARY OF THE INVENTION
A refresh controller is used in a synchronous dynamic random access memory having a full density mode and a reduced density mode. The refresh controller refreshes the SDRAM at a first rate when the SDRAM is operating in the full density mode and at a second rate that is slower than the first rate when the SDRAM is operating in the reduced density mode. The refresh controller functions in this manner in both an auto-refresh mode, in which external refresh command are applied to the SDRAM, and in a self-refresh mode, in which periodic refresh commands are internally generated. For operation in the self-refresh mode, the refresh controller preferably includes an oscillator generating a first periodic clock signal, which is applied to a frequency division circuit to generate a second periodic clock signal having a frequency that is less than the frequency of the first periodic signal. A first selector circuit is preferably used to apply the first periodic clock signal to an output terminal in the full density mode and to apply the second periodic clock signal to the output terminal in the reduced density mode. A counter may be coupled to the output terminal of the first selector circuit. A second selector circuit preferably couples a first stage of the counter to an output terminal in the full density mode and a different stage
Cowles Timothy B.
Mullarkey Patrick J.
Shore Michael A.
Dorsey & Whitney LLP
Lebentritt Michael S.
Micro)n Technology, Inc.
Nguyen Van-Thu
LandOfFree
Refresh controller and address remapping circuit and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Refresh controller and address remapping circuit and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refresh controller and address remapping circuit and method... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3095513