Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode
Reexamination Certificate
1999-08-09
2003-07-01
Cao, Phat X. (Department: 2814)
Active solid-state devices (e.g., transistors, solid-state diode
Field effect device
Having insulated electrode
C257S349000, C257S620000
Reexamination Certificate
active
06586803
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to semiconductor devices, and more particularly to a semiconductor memory device using an SOI (Silicon (Semiconductor) On Insulator) substrate.
2. Description of the Background Art
A semiconductor memory device capable of storing data is provided as one of semiconductor devices. Generally, semiconductor memory devices are roughly classified into volatile memories including a random access memory (RAM) and non-volatile memories including a read only memory (ROM). Volatile memories are further classified into dynamic random access memories (DRAMs) and static random access memories (SRAMs). Non-volatile memories include a mask ROM, an EPROM, a flash memory, an EEPROM and a fuse ROM.
The most common memory cell in a DRAM includes an n channel MOS transistor and a capacitor formed on a p type silicon substrate. The transistor has one source/drain electrode connected to a bit line and the other source/drain electrode connected to a storage node of the capacitor. Therefore, when a word line rises, the transistor turns on, thereby applying a voltage of the bit line to the capacitor. When the word line falls, data is stored in the capacitor.
As described above, a memory cell of a DRAM requires refreshing because data is stored therein by accumulating electrical charges in a capacitor. However, since the structure of a memory cell is simple, a DRAM having a large storage capacity can be manufactured at a low cost.
However, since data is stored in the DRAM memory cell by accumulating charges in the capacitor, &agr;-particles generated in a package, interconnection material, and the like are injected into a silicon substrate, thereby changing the amount of charges stored in the capacitor. More specifically, inversion of the logic of the stored data, the so-called soft error, is apt to occur. Especially in a trench memory cell, the soft error is more apt to occur than a stacked memory cell because its capacitor is formed in the silicon substrate.
In addition, although elements formed on the silicon substrate are electrically isolated by element isolation regions using the LOCOS (Locational Oxidation of Silicon), the field shield method or the like, a complete element isolation has been principally impossible because of the great thickness of the silicon substrate. As a result, there has been a problem that the so-called latch-up tends to occur in which normal operation is hindered by a parasitic MOS transistor attaining an on-state.
Furthermore, since the LOCOS isolation region and the field shield isolation region described above are generally thicker than the element active region, it has been difficult to form various films in these regions.
When a fuse link employed in such as a redundancy circuit of DRAMs is to be blown out with a laser, a considerable thought must be given to the arrangement or the structure of the fuse link so that the silicon substrate under the fuse link is not damaged by emission of the laser. Similarly in bonding wires to bonding pads, thought should also be given to the arrangement or the structure of pads so that the silicon substrate is not damaged by the impact of bonding.
If elements on an SOI substrate are isolated by LOCOS method or the field shield method, the difference in level between the element isolation region and the element active region is great and the subsequent step of stacking layers is difficult. Another problem remains unsolved that a crack tends to be generated in the LOCOS isolation region, the field shield isolation region, the silicon active layer, the buried oxide layer and the like during the dicing step in which the silicon wafer is cut into a plurality of chips.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide a DRAM which suppresses soft errors substantially completely.
Another object of the present invention is to provide a DRAM having a greater storage capacity.
Still another object of the present invention is to provide a semiconductor device which can be easily manufactured.
A further object of the present invention is to provide a semiconductor device in which elements are isolated more sufficiently.
A further object of the present invention is to provide a semiconductor device in which damage given by emission of a laser for blowing out a fuse link is reduced.
A further object of the present invention is to provide a semiconductor device in which damage by bonding is reduced.
A further object of the present invention is provide a semiconductor device in which damage by dicing is reduced.
In accordance with one aspect of the present invention, a semiconductor device is capable of storing data and includes an SOI substrate, a plurality of elements, and an element isolation region. The SOI substrate includes a semiconductor substrate, a buried insulation layer, and a semiconductor active layer. The buried insulation layer is formed on the semiconductor substrate. The semiconductor active layer is formed on the buried insulation layer. The plurality of elements are formed on the SOI substrate. The element isolation region is formed between any of the plurality of elements by removing at least the semiconductor active layer.
As a result, an active region is formed as a mesa by removing the semiconductor active layer other than the element active region, so that the difference in level between the element isolation region and the active region is small. Consequently, the subsequent step of stacking layers is easily performed. In addition, since an insulation layer is buried under the mesa active region, each element is substantially completely isolated from other elements.
In accordance with another aspect of the present invention, a semiconductor device includes an SOI substrate and a trench memory cell. The SOI substrate includes a semiconductor substrate, a buried insulation layer, a semiconductor active layer and a first trench. The buried insulation layer is formed on the semiconductor substrate. The semiconductor active layer is formed on the buried insulation layer. The first trench is formed to penetrate through the semiconductor active layer and reach at least the buried insulation layer. The trench memory cell has a capacitor formed in the first trench.
Therefore, since the capacitor of the trench memory cell is formed in the trench in the SOI substrate, a part of the capacitor is surrounded by the buried insulation layer, reducing soft errors as compared to a conventional DRAM employing a bulk silicon substrate and having no buried insulation layer.
In accordance with a still another aspect of the present invention, a semiconductor device includes an SOI substrate, a plurality of elements, an element isolation region, and a fuse link. The SOI substrate includes a semiconductor substrate, a buried insulation layer, and a semiconductor active layer. The buried insulation layer is formed on the semiconductor substrate. The semiconductor active layer is formed on the buried insulation layer. The plurality of elements are formed on the SOI substrate. The fuse link is formed on the element isolation region.
Therefore, the element isolation region is formed under the fuse link, under which region the buried insulation layer is formed, so that the semiconductor substrate is not damaged when the fuse is blown out with a laser.
In accordance with a further aspect of the present invention, a semiconductor device includes an SOI substrate and a field shield isolation region. The SOI substrate includes a semiconductor substrate, a buried insulation layer, and a semiconductor active layer. The buried insulation layer is formed on the semiconductor substrate. The semiconductor active layer is formed on the buried insulation layer. The field shield isolation region includes a field shield isolation film and a field shield conductive film. The field shield isolation film is formed on the semiconductor active layer. The field shield conductive film is formed on the field shield insulation film at a prescribed region ot
Hidaka Hideto
Suma Katsuhiro
Tsuruda Takahiro
Cao Phat X.
McDermott & Will & Emery
Mitsubishi Denki & Kabushiki Kaisha
LandOfFree
Semiconductor device using an SOI substrate does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Semiconductor device using an SOI substrate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device using an SOI substrate will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3074970