Low-temperature HDI fabrication

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S598000, C438S599000, C438S618000

Reexamination Certificate

active

06541378

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to methods for fabricating an 5 high-density-interconnect (HDI) assemblages including components which are damaged by high temperature processing.
BACKGROUND OF THE INVENTION
High density interconnect assemblages such as those described in U.S. Pat. No. 4,783,695, issued Nov. 8, 1988 in the name of Eichelberger et al., and in numerous other patents, are finding increased usage. In the typical HDI assemblage, a dielectric substrate such as alumina has a planar surface and one or more wells or depressions. Each well or depression extends below the planar surface by the dimension of a component which is to become part of the HDI assemblage. The component is typically an integrated circuit, having its electrical connections or contacts on an upper surface. These contacts or connections are preferably made from titanium-coated copper-containing metals, so that the later formation of through vias by means of lasers exposes titanium, rather than copper, to avoid oxidation of the copper, which oxidation might affect the adhesion of additional layers. Each component is mounted in a well dimensioned to accommodate the component with its contacts in substantially the same plane as the planar surface of the substrate. The components are typically held in place in their wells or depressions by an epoxy adhesive. A layer of dielectric material such as Kapton polyimide film, manufactured by DuPont of Wilmington, Del., is laminated to the devices using ULTEM polyetherimide thermoplastic adhesive, manufactured by General Electric Plastic, Pittsfield, Mass., which is then heat-cured at about 260° to 300° C. in order to set the adhesive. The polyetherimide adhesive is advantageous in that it bonds effectively to a number of metallurgies, and can be applied in a layer as thin as 12 micrometers (&mgr;m) without formation of voids, and is a thermoplastic material, so that later removal of the polyimide film from the components is possible for purposes of repair by heating the structure to the plastic transition temperature of the polyetherimide while putting tension on the polyimide film.
Following the curing of the ULTEM adhesive layer holding the first sheet of dielectric film onto the components, through via apertures are made through the dielectric film and its adhesive layer at the locations of at least some of the electrical connections. The apertures are typically made by the use of a laser. The laser tends to generate soot as the dielectric and adhesive are vaporized. When the connections are made to copper surfaces, the heat of the laser action also tends to create copper oxides on the connections. The soot and oxides tend to prevent good metal-to-metal contact during later stages of processing which include metal deposition.
Following the drilling of through vias through the first layer of the polyimide film and its polyetherimide adhesive, a patterned layer of titanium/copper/titanium electrical conductors is applied to the exposed surface of the polyimide film, into the through vias, and onto the contacts of the components. This completes the formation of a first layer of electrical connections to the components.
One or more additional thin sheets of polyimide dielectric material are layered onto the upper surfaces using silicone polyimide epoxy adhesive (SPIE). The SPIE is a thermoset material such as OXYSIM 600, manufactured by Occidental Chemical Corporation, Grand Island, N.Y., which is then cured at temperatures below 200°. Once set, the SPIE cannot be softened by heating. Each additional layer of polyimide film has its own pattern of through vias drilled as far as the upper titanium surface of a lower layer of titanium/copper/titanium conductor, followed by its own layer of titanium/copper/titanium deposition. The titanium/copper/titanium layered metallized or deposited conductors are known to provide reliable interconnections.
It has lately become important to integrate into HDI modules certain components including copper-containing electrical connection materials. Such copper-containing electrical contacts are found in at least on-module connection strips, shielding or grounding members, and magnetic components such as tuned ferrite-loaded coils or transformers. These magnetic components tend to be somewhat larger than solid-state chips, but are dimensioned to be accommodated in the HDI modules for which they are intended.
The integration of such modules presents some problems, in that the manufacturers: of the components are accustomed to using copper as the main conductive material, and to making the electrical contacts from copper. Copper is not the best material for electrical contacts in an HDI context, because it oxidizes readily, especially in the presence of high temperatures. Neither titanium nor adhesives reliably adhere to oxidized or dirty copper. Even if they initially appear to adhere, the,adhesion often fails in the presence of heat or moisture. Thus, a copper surface is not acceptable for HDI connection.
Other possible surfaces were evaluated for deposition on the copper of the magnetic components. Electrically deposited and electroless nickel, tin, and palladium were among the surfaces evaluated. It was found that adhesion to nickel was relatively poor for both titanium and adhesive, regardless of how it was deposited. Tin was discounted as a suitable surface, because of the known problem of formation of dendrites. Palladium was also found not to provide good adhesion.
Improved HDI processing methods are desired.
SUMMARY OF THE INVENTION
A method for making a high-density interconnection between at least one component and one interconnection sheet includes the step of procuring a component having copper-containing electrical contacts lying in a common plane, and procuring a film of polyimide dielectric material. The method includes the laminating of the film to at least the electrical contacts of the component using a layer of silicone polyimide epoxy adhesive. Following the laminating step, laser-formed vias are defined through the film of polyimide epoxy adhesive, and any polyimide dielectric material which may overlie the contacts, to at least some of the electrical contacts of the component. As a result, soot and copper oxides may undesirably remain on the electrical contacts. At least the vias and that portion of the electrical contacts exposed at the bottoms of the vias are cleaned by at least argon reactive ion etching. Metallization is applied to at least the cleaned vias and contacts, to form a path for the flow of electricity through the film of polyimide;dielectric material to the electrical contacts, and to thereby define the interconnection sheet. In one version of the method, the step of laminating the film to at least the electrical contacts of the component using a layer of silicone polyimide-epoxy adhesive includes the step of curing the silicone polyimide epoxy adhesive. The curing may take place at a temperature not greater than about 190° C.
A method for making a high-density interconnection between at least one component and a high-density interconnection sheet according to another aspect of the invention includes the step of procuring a component having copper-containing electrical contacts lying in a common plane, and having a selected dimension in a direction perpendicular to the common plane. In one version, the step of procuring the component includes the step of procuring a magnetic component. The method also includes the step of procuring a dielectric substrate, which may be partially or wholly metallized, and which includes or defines a generally planar surface. The generally planar surface defines a first aperture extending below the planar surface by the selected dimension or otherwise dimensioned to accommodate the component with the common plane substantially coincident with the planar surface. The component is fastened within the aperture, with its electrical contacts lying in a plane substantially coincident with the planar surface. A film of polyimide dielectric material is procur

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Low-temperature HDI fabrication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Low-temperature HDI fabrication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low-temperature HDI fabrication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3072249

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.