Micromechanical component with sealed membrane openings and...

Active solid-state devices (e.g. – transistors – solid-state diode – Responsive to non-electrical signal – Physical deformation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S418000, C438S053000, C361S283400

Reexamination Certificate

active

06541833

ABSTRACT:

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention lies in the field of micromechanics. More specifically, the invention relates to a method for producing a micromechanical component, in particular a micromechanical sensor, and to a micromechanical component comprising a wafer, a cavity formed above the wafer with a membrane situated thereabove, at least one sacrificial layer serving as support surface for the membrane, and at least one membrane opening which is formed in the region of the cavity and sealed with a sealing cover. The invention further pertains to the use of such a component in sensors such as, for example, pressure sensors in microphones or acceleration sensors.
A micromechanical sensor with openings in the membrane layer for pressure measurements is known from the commonly assigned published European patent application EP 0 783 108. That pressure sensor has a cavity which is bounded above the cavity essentially by a membrane formed from an electrically conductive layer. The membrane layer, which can consist of doped polycrystalline silicon or metal, for example, forms, in common with a counter-electrode arranged on the underside of the cavity, an electric capacitor which can be used to measure the change in volume of the cavity with time. The counter-electrode can be formed, for example, by a doped region in the underlying substrate wafer. It is also possible for piezoresistive elements which record movements of the membrane surface to be incorporated into the membrane material.
The prior art micromechanical sensor consists essentially of materials which are normally used in semiconductor production. Consequently, it is possible for the sensor to be arranged in common with an integrated electronic drive and/or evaluation system on the chip of the sensor.
According to EP 0 783 108, the first step in producing the micromechanical sensor is to apply a sacrificial layer to a suitable wafer material. This is followed by coating with a membrane material by making use of a mask. The mask gives rise in the membrane surface to openings through which, in a subsequent step, a cavity is etched selectively with reference to the substrate and membrane materials. By comparison with etching the cavity via lateral channels, the mode of procedure via an etching method from the top side is advantageous owing to a reduced etching time. After production of the cavity, the openings in the membrane must be resealed. For this purpose, a layer made from borophosphorus glass (BPSG) is applied, whose thickness is selected such that at most a narrow gap remains above the openings in the membrane after the deposition.
Thereafter, heat (thermal) treatment at approximately 1000° C. is carried out, during which the BPSG layer melts and the holes are sealed. A layer made from the sealing material remains in the form of a skin on the top side and bottom side of the membrane. This gives rise to a membrane assembly which consists of two different materials. Given the different membrane material, the different material properties result in mechanical loads and non-reproducible properties of the micromechanical sensor. A further disadvantage is the sensitivity of the oxide material, used to seal the membrane openings, to external environmental influences such as atmospheric humidity, for example.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method of fabricating a micromechanical component and a corresponding component, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which overcomes the disadvantages of prior art micromechanical components with sealed openings in the membrane surface. A further object of the invention is to provide a micromechanical component, preferably a micromechanical sensor, having an improved resistance to external environmental influences.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method of producing a micromechanical component, which comprises the following method steps:
producing a semi-finished micromechanical component comprising a wafer, a first membrane layer, and one or more sacrificial layers supporting the first membrane layer;
forming openings in the first membrane layer after or during the application of the first membrane layer;
removing material of the sacrificial layer through the openings to form a cavity;
sealing the openings with sealing covers;
removing material on a top side of the first membrane layer, for exposing the surface of the first membrane layer and planarizing the first membrane layer; and
subsequently applying a second membrane layer on the first membrane layer.
In accordance with an added feature of the invention, the removing step comprises removing sealing material by back etching, such as by wet chemical etching or dry etching.
In accordance with an additional feature of the invention, the sealing step comprises depositing an oxide material on the first membrane layer, heating the oxide material to a temperature at which the deposited oxide material flows and seals the openings, and cooling the oxide material to a temperature at which the oxide material hardens.
The material required in producing the sealing covers is preferably removed when removing material on the top side of the first membrane layer.
The exposure of the openings is preferably performed by demasking regions during the membrane production. In this process, the shape of the openings is arbitrary and determined by the application of the micromechanical component. The regions can be round, angular or strip-shaped, for example. It is also possible for the regions to have the shape of annularly closed strips.
The removal of the material of the sacrificial layer is preferably carried out by an etching method known per se which is selective with reference to the membrane and the wafer.
The application of the second membrane layer to the first membrane layer is carried out to protect the sealed first membrane layer against external influences. In particular, the second membrane layer protects the sealing covers arranged in the first membrane layer against external influences.
According to a preferred embodiment of the invention, the sealing covers are sealed using a method which comprises the steps of a) applying an oxide material to the first membrane layer, and b) raising the temperature such that the oxide material applied melts and seals the openings. Depending on the material used to seal the openings, during the heat treatment surface effects can lead to wetting of the surfaces in contact with the material applied. This wetting leads to the formation of a skin of the oxide material. According to the invention, there is no such oxide skin on the top side of the first membrane layer.
With the above and other objects in view there is also provided, in accordance with the invention, a micromechanical component, comprising:
a wafer;
at least one sacrificial layer having a cavity formed therein;
a first membrane layer disposed on the sacrificial layer, having a top side and having formed therein at least one membrane opening in a region of the cavity;
a sealing cover sealing the at least one membrane opening and being formed of a different material than the first membrane layer, wherein substantially no skin of a material corresponding to the material of the sealing cover is disposed on the top side of the first membrane layer; and
a second membrane layer disposed directly on the first membrane layer.
In accordance with another feature of the invention, the sealing cover if formed of an oxide.
In accordance with a further feature of the invention, the sealing covers and the first membrane layer together form a substantially flat surface on the top side of the first membrane layer.
In accordance with again a further feature of the invention, the first membrane layer has a thickness in a range from substantially 0.2 &mgr;m to substantially 20 &mgr;m, the first membrane layer and the second membrane laye

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Micromechanical component with sealed membrane openings and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Micromechanical component with sealed membrane openings and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Micromechanical component with sealed membrane openings and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3069736

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.