System and method for interleaved execution of multiple...

Electrical computers and digital processing systems: processing – Processing control – Branching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C712S219000, C712S245000, C712S240000, C709S241000

Reexamination Certificate

active

06594755

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention is directed, in general, to processing systems and, more specifically, to a microprocessor that is capable of processing multiple independent threads of instruction code.
BACKGROUND OF THE INVENTION
The demand for faster computers demands that state-of-the-art microprocessors execute instructions in the minimum amount of time. Over the years, microprocessor speeds have been increased in a number of different ways, including increasing the speed of the clock that drives the processor, reducing the number of clock cycles required to perform a given instruction, and reducing the number of gate delays incurred while executing an instruction.
Microprocessor speeds have also been increased by means of one or more instruction pipelines. An instruction pipeline is a series of separate instruction processing stages. Each stage is independent and is optimized to perform a specific portion of the overall instruction processing. Thus, instructions may be fed into the first stage of the pipeline and each stage performs a specific portion of the instruction, much like an assembly line. Preferably it is not necessary for one instruction to finish processing before the next instruction is loaded into the pipeline. Thus, multiple instructions may be loaded into the instruction pipeline. For example, a five stage instruction pipeline may contain up to five instructions at one time.
The instruction pipeline concept has been extended even further to multiple pipeline architectures. In a multiple pipeline architecture, a complex instruction decoder feed instructions to two or more instruction pipelines. The complex instruction decoder may select a particular pipeline based on which instructions are already in each pipeline and how fast the instructions are expected to flow through the remaining pipeline stages.
However, there are limitations to the improvements that may be provided by single and multiple instruction pipelines. Going from single to multiple instruction pipelines has diminishing returns as the number of instruction pipeline grows. Branch (or “change of flow”) instructions make it difficult to decode many instructions in parallel. Conditional branch instructions cause problems with pipelines because the next instruction to be loaded into the pipeline cannot be determined until after the branch is resolved. Traditional solutions to this problem generally revolve around inserting more logic to do branch predictions and then speculatively executing the predicted path until the branch is resolved. This is done to maximize processor throughput.
However, if small size and low power are important, branch prediction techniques have significant drawbacks. A large amount of high speed circuitry is required, which is expensive in both area and power consumption. In addition, speculative execution wastes power if the predicted path turns out to be wrong and the speculative execution is flushed. Furthermore, data dependencies can serialize the use of execution units. As a result, in conventional microprocessors containing, for example, four instruction pipelines, the fourth pipeline may be used less than five percent (5%) of the time in some applications.
Therefore, there is a need in the art for improved microprocessors that have a higher throughput rate. In particular, there is a need in the art for improved microprocessors that include multiple instruction pipelines. More particularly, there is a need in the art for multiple instruction pipeline microprocessors that more efficiently use the available instruction pipelines and that are less susceptible to stalls caused by branch (change-of-flow) instructions and data dependencies.
SUMMARY OF THE INVENTION
The limitations inherent in the prior art described above are overcome by the present invention which provides, for use in a pipelined processor comprising an instruction execution pipeline, an apparatus for loading instructions into the instruction execution pipeline. In an advantageous embodiment of the present invention, the apparatus for loading instructions comprises: 1) an instruction loading circuit capable of loading instructions from a first instruction thread into the instruction execution pipeline; and 2) a branch instruction detection circuit capable of detecting a branch instruction in the first instruction thread and, in response to the detection, causing the instruction loading circuit to stop loading instructions from the first instruction thread into the instruction execution pipeline and causing the instruction loading circuit to begin loading instructions from a second instruction thread into the instruction execution pipeline.
The present invention takes advantage of the fact that two separate threads of code are normally running in a data processing system. Thus, instead of building the extra circuitry needed to predict a branch destination in a first thread of code, the branch instruction is resolved during normal execution and useful work is done in the meantime on the second thread of code.
In one embodiment of the present invention, the apparatus for loading instructions further comprises a first state table capable of storing first state information associated with the first instruction thread and a second state table capable of storing second state information associated with the second instruction thread.
In another embodiment of the present, invention, the instruction execution pipeline comprises a plurality of execution units capable of selecting and retrieving the first state information from the first state table and using the first state information to execute instructions in the first instruction thread.
In still another embodiment of the present invention, the plurality of execution units selects and retrieves the first state information according to at least one thread status bit associated with the instructions in the first instruction thread.
In yet another embodiment of the present invention, the instruction execution pipeline comprises a plurality of execution units capable of selecting and retrieving the second state information from the second state table and using the second state information to execute instructions in the second instruction thread.
According to a further embodiment of the present invention, the plurality of execution units selects and retrieves the second state information according to at least one thread status bit associated with the instructions in the second instruction thread.
According to a still further embodiment of the present invention, the instruction execution pipeline comprises an address generation circuit capable of selecting and retrieving addresses from the first state information and from the second state information according to at least one thread status bit associated with the instructions in the first and second instruction threads.
According to a yet further embodiment of the present invention, the branch instruction detection circuit is further capable of detecting a branch instruction in the second instruction thread and, in response to the detection, causing the instruction loading circuit to stop loading instructions from the second instruction thread into the instruction execution pipeline and causing the instruction loading circuit to begin loading instructions from the first instruction thread into the instruction execution pipeline.
The foregoing has outlined rather broadly the features and technical advantages of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features and advantages of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they may readily use the conception and the specific embodiment disclosed as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent constructions do not d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for interleaved execution of multiple... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for interleaved execution of multiple..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for interleaved execution of multiple... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3051731

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.