Membrane partition system for plating of wafers

Chemistry: electrical and wave energy – Apparatus – Electrolytic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S283000, C204S297110, C204S238000, C204S259000, C205S148000, C205S068000

Reexamination Certificate

active

06569299

ABSTRACT:

FIELD OF INTENTION
The present invention relates generally to electroplating and more particularly an anode for an electroplating system.
BACKGROUND OF THE INVENTION
The manufacture of semiconductor devices often requires the formation of electrical conductors on semiconductor wafers. For example, electrically conductive leads on the wafer are often formed by electroplating (depositing) an electrically conductive material such as copper on the wafer and into patterned trenches.
Electroplating involves making electrical contact with the wafer surface upon which the electrically conductive layer is to be deposited (hereinafter the “wafer plating surface”). Current is then passed through a plating solution (i.e. a solution containing ions of the element being deposited, for example a solution containing Cu
++
) between an anode and the wafer plating surface (the wafer plating surface being the cathode). This causes an electrochemical reaction on the wafer plating surface which results in the deposition of the electrically conductive layer.
Generally, electroplating systems use soluble or insoluble anodes. Insoluble anodes tend to evolve oxygen bubbles which adhere to the wafer plating surface. These oxygen bubbles disrupt the flow of ions and electrical current to the wafer plating surface creating nonuniformity in the deposited electrically conductive layer. For this reason, soluble anodes are frequently used.
Soluble anodes are not without disadvantages. One disadvantage is that soluble anodes, by definition, dissolve. As a soluble anode dissolves, it releases particulates into the plating solution. These particulates can contaminate the wafer plating surface, reducing the reliability and yield of the semiconductor devices formed on the wafer.
One conventional technique of reducing particulate contamination is to contain the soluble anode in a porous anode bag. However, while preventing large size particulates and chunks from being released into the plating solution, conventional anode bags fail to prevent smaller sized particulates from entering the plating solution and contaminating the wafer plating surface.
Another conventional technique of reducing particulate contamination is to place a filter between the anode and the article to be electroplated as set forth in Reed, U.S. Pat. No. 4,828,654 (hereinafter Reed). Referring to FIG. 2 of Reed, filters 60 are positioned between anode arrays 20 and a printed circuit board 50 (PCB 50). Filters 60 allows only ionic material of a relatively small size, for example one micron, to pass from anode arrays 20 to PCB 50. While allowing relatively small size particulates to pass through, filters 60 trap larger sized particulates avoiding contamination of PCB 50 from these larger sized particulates. Over time, however, filters 60 become clogged by these larger sized particulates.
To reduce clogging of filters 60, Reed provides a counterflow of plating solution through filters 60 in a direction from PCB 50 towards anode arrays 20. This counterflow tends to wash some of the larger sized particulates from filters 60. However, even with the counterflow, eventually filters 60 become clogged. To allow servicing of filters 60, retaining strips 66 and support strips 68 allow filters 60 to be removed and cleaned when filters 60 eventually become clogged.
Although providing a convenient means of cleaning filters 60, removal of filters 60 necessarily releases the larger sized particulates from within the vicinity of anode arrays 20 into the entire system and, in particular, into the vicinity where PCBs 50 are electroplated. Even after filters 60 are cleaned and replaced, this contamination of the system can cause contamination of a subsequently electroplated PCB 50 reducing the reliability and yield of the printed circuit boards. Further, even with filters 60, particulates accumulate on receptacle 14 in the vicinity of anode arrays 20 and the system must periodically be shut down and drained of plating solution to clean these particulates from receptacle 14.
In addition to creating particulates, a soluble anode changes shape as it dissolves, resulting in variations in the electric field between the soluble anode and the wafer. Of importance, the thickness of the electrically conductive layer deposited on the wafer plating surface depends upon the electric field. Thus, variations in the shape of the soluble anode result in variations in the thickness of the deposited electrically conductive layer across the wafer plating surface. However, it is desirable that the electrically conductive layer be deposited uniformly (have a uniform thickness) across the wafer plating surface to minimize variations in characteristics of devices formed on the wafer.
Another disadvantage of soluble anodes is passivation. As is well known to those skilled in the art, the mechanism by which anode passivation occurs depends upon a variety of factors including the process conditions, plating solution and anode material. Generally, anode passivation inhibits dissolution of the anode while simultaneously preventing electrical current from being passed through the anode and should be avoided.
SUMMARY OF THE INVENTION
In accordance with the present invention an anode includes an anode cup, a membrane and ion source material. The anode source material is located in an enclosure formed by the anode cup and membrane. The anode cup and membrane both have central apertures through which a jet (a tube) is passed. During use, plating solution flows through the jet.
By passing the jet through the center of the anode, plating solution from the jet is directed at the center of the wafer being electroplated. This enhances removal of gas bubbles entrapped on the wafer plating surface and improves the uniformity of the deposited electrically conductive layer on the wafer.
The membrane has a porosity sufficient to allow ions from the ion source material, and hence electrical current, to flow through the membrane. Although allowing electrical current to pass, the membrane has a high electrical resistance which produces a voltage drop across the membrane during use. This high electrical resistance redistributes localized high electrical currents over larger areas improving the uniformity of the electric current flux to the wafer which, in turn, improves the uniformity of the deposited electrically conductive layer on the wafer.
In addition to having a porosity sufficient to allow electrical current to pass, the membrane also has a porosity sufficient to allow plating solution to flow through the membrane. However, to prevent particulates generated by the ion source material from passing through the membrane and contaminating the wafer, the porosity of the membrane prevents contaminant particulates from passing through the membrane.
Of importance, when the membrane becomes clogged with particulates, the anode can be readily removed from the electroplating system. After removal of the anode, the membrane can be separated from the anode cup and cleaned or replaced. Advantageously, cleaning of the membrane is accomplished outside of the plating bath and, accordingly, without releasing particulates from inside of the anode into the plating bath.
In one embodiment, the jet includes a plating solution inlet through which plating solution flows from the jet into the enclosure formed by the anode cup and membrane and across the ion source material. The flow of plating solution across the ion source material prevents anode passivation. The plating solution then exits the enclosure via two routes. First, some of the plating solution exits through the membrane. As discussed above, contaminant particulates generated as the ion source material dissolves do not pass through the membrane and accordingly do not contaminate the wafer. Second, some of the plating solution exits through outlets located at the top of a wall section of the anode cup. These outlets are plumbed to an overflow receiver and thus the plating solution which flows through these outlets does not enter the plating bath and does no

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Membrane partition system for plating of wafers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Membrane partition system for plating of wafers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Membrane partition system for plating of wafers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3040491

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.