Semiconductor storage device and method of producing same

Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S295000, C257S303000, C257S306000

Reexamination Certificate

active

06538272

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor storage device and a method of producing same, and more particularly, to a semiconductor storage device having a ferroelectric capacitor as a charge storage capacitor and a method of producing such a device.
Recently, research and development of nonvolatile semiconductor storage devices using a ferroelectric has been energetically made, and some of them have been brought into practice. The conventionally used planar memory cell structure, however, does not serve to increase the integrated density and storage capacity because the cell size of the planar structure is as large as about 100 &mgr;m
2
. In contrast, the stacked structure is suitable for increasing the storage capacity. The stacked structure is a structure in which a ferroelectric capacitor is formed above a source or a drain of a selection transistor via a conductive plug made of, e.g., polysilicon doped with impurities.
In the stacked structure, a capacitor lower electrode is formed on or above the plug of, for example, polysilicon. As an electrode material, a precious metal such as platinum (Pt) is normally used in ferroelectric capacitors. If such a metal is deposited directly on silicon, however, a silicide formation reaction takes place between those materials at relatively low temperatures, which results in poor conduction at the interface between the lower electrode and the conductive plug, and hillocks on a film surface. Conventionally, in order to suppress these phenomena, a barrier metal formed of, for example, titanium nitride (TiN), nitride of an alloy of tantalum and silicon (TaSiN), etc. is provided between the polysilicon plug and the lower electrode.
Those nitrides can suppress the silicide formation reaction between the polysilicon plug and the lower electrode. However, when the lower electrode is formed of Pt, which is very permeable to oxygen, a surface of the barrier metal gets oxidized during a heat treatment performed in an oxygen ambient for crystallization of the ferroelectric. The oxidation of the barrier metal also invites hillocks and film detachment between the lower electrode and the barrier metal. To prevent such a disadvantage, iridium (Ir) having a low permeability to oxygen is often used as a lower electrode material to thereby realize a ferroelectric capacitor having a high resistance to oxidation.
In an ordinary device fabrication process, a barrier metal material, a lower electrode material, a ferroelectric material and an upper electrode material are stacked in this order and then, these materials are subjected to an etching process in the reverse order to thereby form a ferroelectric capacitor including the upper electrode, ferroelectric film and lower electrode, and a barrier metal. After that, a heat treatment process is performed to recover the ferroelectric film. During the etching process and the heat treatment process, however, the following problems take place.
When etching Pt and Ir by a dry etching technique, there occurs etch residue on side surfaces of a resulting pattern and a resist. Etching the barrier metal material without removing such etch residue on the pattern and/or the resist results in change of the pattern size, or shift of the pattern outline. This makes it difficult to form the barrier metal material into a desired shape and also causes a short circuit between the upper and lower electrodes.
If etch residue newly occurs during the etching of the barrier metal material as well, so that the new etch residue is cumulated on the previous etch residue, it is very difficult to remove the cumulative etch residue. In order to prevent cumulation of the etch residue from occurring, it is necessary to stop etching at an interface between the lower electrode material and the barrier metal material, remove the etch residue on the lower electrode, and then start etching the barrier metal material. In most cases, however, it is very difficult to stop the etching at the interface between the lower electrode and the barrier metal material because the etching selection ratio of the lower electrode to the barrier metal is small.
There is another problem. When a ferroelectric material is incorporated in an integrated circuit, the ferroelectric material is subjected to various fabrication processes. Specifically, in the process of forming a ferroelectric capacitor, the ferroelectric material is directly subjected to a dry etching process and a treatment using a chemical liquid. This does damage to the capacitor. Recovery from the damage requires a heat treatment preferably at a temperature as high as 700° C. and in an oxygen ambient.
After the capacitor is formed, more specifically, immediately after the lower electrode and the barrier metal are completed through the processing of the lower electrode material and the barrier metal material, side surfaces of the barrier metal are exposed or not covered with any film. If the heat treatment is performed in the oxygen ambient in such a state, the oxidation reaction will proceed in the barrier metal starting from its side surfaces, resulting in the poor conduction due to an increased resistance, development of hillocks, and film detachment. To avoid such disadvantages, conventionally, the heat treatment after the formation of the lower electrode and barrier metal has been performed in an ambient containing no oxygen, such as a nitrogen ambient.
In addition, if a further heat treatment is performed in the oxygen ambient in a process after an interlayer dielectric has been formed over the ferroelectric capacitor, oxygen tends to diffuse through the interlayer dielectric formed of, for example, NSG (Non-doped Silicate Glass) into the barrier metal, so that the barrier metal is oxidized. For this reason, it is difficult to perform a high-temperature heat treatment in the oxygen ambient after the lower electrode and the barrier metal have been formed, which means that it is difficult to recover the characteristic of the ferroelectric capacitor.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide a semiconductor storage device having a structure that allows the barrier metal to be prevented from oxidation during a high-temperature heat treatment even in an oxygen ambient in the process of producing the device, and to provide a method of producing such a semiconductor storage device.
Another object of the present invention is to provide a semiconductor storage device with a structure which can solve the above etch residue-related problems, and also to provide a method of producing such a semiconductor storage device.
According to an aspect of the present invention, in a semiconductor storage device comprising a MOS transistor formed on a semiconductor substrate, and a capacitor having a lower electrode, an upper electrode, and a dielectric between the lower and upper electrodes, the lower electrode of the capacitor being electrically connected with a source/drain region of the MOS transistor through a contact plug and a barrier metal provided on or above the contact plug, an improvement is characterized in that:
an anti-oxygen-permeation film is formed on entire side surfaces of the barrier metal; and
the lower electrode covers at least an entire upper surface of the barrier metal.
The dielectric may be a ferroelectric.
With the above arrangement, due to the presence of the anti-oxygen-permeation film on the entire side surfaces of the barrier metal, the barrier metal is prevented from being oxidized during a heat treatment which is performed in an oxygen ambient for recovery of the dielectric, especially, of a ferroelectric in the process of producing the storage device. Therefore, the semiconductor storage device is allowed to have a good dielectric (especially ferroelectric) film characteristic.
This storage device can be produced, for example, by a method according to another aspect of the present invention, which comprises the steps of:
depositing a first interlayer dielectric over a semiconductor substrate formed with

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor storage device and method of producing same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor storage device and method of producing same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor storage device and method of producing same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3023481

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.