Methods to control organic contaminants in fibers

Paper making and fiber liberation – Processes and products – Non-fiber additive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S199000, C162SDIG004

Reexamination Certificate

active

06471826

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to paper making processes and more particularly relates to controlling the organic contaminants present in certain types of fibers used to make paper or similar types of fiber containing products.
Conventional recycling of old paper products such as old new print, old corrugated containers, and mixed office waste is an important aspect of papermills today due to environmental demands that many paper containing products have a portion of recycled fibers contained within the paper product. Thus, papermills are in a situation where the recycling of paper products is a necessity. However, the recycling of the paper products generally requires additional processing steps in order to lead to fibers which can be useable in paper products.
Conventional recycling of old newspapers to obtain fibers comparable to the type of fibers used to originally make the newsprint is known in the art as “de-inking,” and typically involves pulping, washing, usually with surfactants, screening, solubilizing insoluble contaminants usually by strong caustic treatments, washing, and bleaching of the fibers to counteract the yellowing effects of caustic treatments.
Generally, the first step in conventional recycling is to separate the paper into individual fibers with water to form a pulp slurry followed by removing ink and contaminants from the fibers by a combination of various process steps, such as screening, centrifugal cleaning, washing, flotation, and the like. The screening and centrifugal cleaning step removes large contaminants, such as paperclips, staples, plastics, and the like. The primary purpose of washing and flotation steps is to solubilize and/or suspend contaminants in the water and to remove the contaminants from the water. Surfactants and caustic agents are added to facilitate the solubilization and separation of contaminants from the fibers. Once caustic agents are used, some yellowing of the fibers occurs which results in a need to bleach the fibers. The fibers are blended with, typically, virgin fibers and then used in the papermaking process for which the fiber properties are suitable. Recent developments in waste paper de-inking make use of enzymes to aid in the detachment and removal of inks from the fibers. These processes describe the use of particular types of enzymes to facilitate ink removal without the negative effects of caustic treatment on brightness along with the use of flotation to remove the agglomerated ink particles.
In the past, chemical additives such as caustic agents have been added to remove organic contaminants, known as “stickies.” Stickies are generally adhesives, glues, hot melts, coatings, coating binders, ink residues, de-inking chemicals, wood resins, rosin, and unpulped wet strength resins that typically are present with the fiber to be recycled. These organic contaminants typically must be removed in substantial quantities so that they don't effect the subsequent processing steps. There is always a desire in the papermaking industry to develop new methods to remove such organic contaminants in more effective and environmentally friendly ways.
“Stickies” can be generally described as tacky, hydrophobic, pliable organic materials found in recycled paper systems. Stickies have a broad range of melting points and different degrees of tackiness dependent upon the composition of the stickies. Temperature, pH, concentration, size, and composition can affect the tackiness of stickies.
Recycled paper fibers contain many components that when repulped in recycle fiber plants become stickies. Recycled furnishes may have as many as a dozen different types of stickies, each having its own characteristics. Sources of stickies may include any of the following: adhesives, hot melts, coating binders, ink residues, deinking chemicals, wood resins, rosin, pitch, and wet strength resins. The actual tacky deposits found on paper machines may be a combination of several of these organic contaminants as well as inorganic particles such as talc, clay, or calcium carbonate.
Stickies deposit on machine surfaces, fabrics, wires, felts, and rolls and lead to problems such as wet end breaks, pressroom breaks, dryer section breaks, holes, sheet defects, and high dirt counts. These deposits and associated problems lead to a significant amount of downtime yearly. The cost of stickies has been estimated at over 500 million dollars annually in the U.S., when considering the cost of downtime, chemical costs, production losses, rejected materials, and customer complaints.
There are typically two main methods of removing stickies, mechanical and chemical. Mechanical methods include screening, cleaning, washing, floating, and disperging, with each method designed to remove a different size contaminant. Screening typically removes larger or macro stickies(>0.004 inch or 100 microns). Forward and reverse cleaners can be used. Based on density differences using centrifugal force, forward cleaners remove contaminants heavier than water and reverse cleaners remove particles lighter than water. This method removes more macro stickies than micro stickies. Floating removes intermediate size stickies (50-300 microns), which are troublesome, because they're small enough to be accepted by screening and cleaning but too large to be removed by washing. In disperging, the stock is thickened, passed through a device at high temperature, pressure, and shear, which breaks organic contaminants, including stickies, into smaller pieces.
Various chemical methods can be used. For instance, in pacification, additives like talc, clay, nonionic organic polymers, and other inorganic particles are used to render the stickies less tacky. In dispersion, dispersants, surfactants, and solvents are used to make stickies smaller.
In fixation, the stickies are attached to the paper sheet by using a cationic water soluble polymer, which adds charge to the stickies. In disperse and fix, a dispersant is added first to reduce the size of the stickies and then a cationic polymer is used to fix the stickies onto the sheet. With passivation, the use of dispersants, solvents, and low molecular weight cationic polymers makes the paper machine less susceptible to stickies.
The favored approach to remove stickies is to keep the stickies large in the stock prep area, so that the mechanical cleaning equipment can remove as many “stickies” as possible. Then, all remaining stickies should be dispersed either mechanically or chemically and fixed to the fiber, so that it can be sent out with the sheet.
Once as many stickies as possible are removed mechanically, the rest have in the past been dispersed mechanically, chemically, or by using a combination of the two. Once dispersed, polymer addition to stabilize these particles in their smallest state has been used, so that the particles will be retained on the sheet.
Measuring and controlling stickies in a recycled paper manufacturing process has always been a challenge. Variations in recycled paper quality and the trend to increase the amount of waste paper incorporated into each ton of pulp produced are each contributing factors that make this challenge even more difficult to address. (Pulp and Paper Fact Book, 2000). These variations make predicting the amount of stickies that are entering a mill's system troublesome. Once these stickies are in the system, the larger contaminants, or macrostickies, are often removed mechanically. However, additional stresses on the screens and cleaner banks such as high furnish consistency, improper in-screen dilution, improper reject rates, and differential pressure control problems will facilitate the acceptance of formed macrostickies (Gallagher, 1997). Macrostickies are defined as stickies that are retained on a 0.10 mm screen plate (Heise, 1998). These contaminants which come from adhesives, coatings, binders, and other materials are incorporated into the furnish during the pulping process, and will deposit on forming fabrics, press felts, dryer fabrics, press section pick

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods to control organic contaminants in fibers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods to control organic contaminants in fibers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods to control organic contaminants in fibers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2998865

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.