Distal protection device

Surgery – Instruments – Internal pressure applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S159000

Reexamination Certificate

active

06346116

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to endovascular devices for capturing particulate. More particularly, the invention relates to a filter assembly located at the distal end of a delivery member to capture emboli in a blood vessel during a vascular procedure and then removing the captured emboli from the patient after completion of the procedure.
BACKGROUND OF THE INVENTION
A variety of treatments exist for compressing or removing athersclerotic plaque in blood vessels. The use of an angioplasty balloon catheter is common in the art as a minimally invasive treatment to enlarge a stenotic or diseased blood vessel. This treatment is known as percutaneous transluminal angioplasty, or PTA. To provide radial support to the treated vessel in order to prolong the positive effects of PTA, a stent may be implanted in conjunction with the procedure.
Removal of the entire thrombosis or a portion of the thrombosis sufficient enough to enlarge the stenotic or diseased blood vessel may be accomplished instead of a PTA procedure. Thrombectomy and atherectomy are well known minimally invasive procedures that mechanically cut or abrade the stenosis within the diseased portion of the vessel. Alternatively, ablation therapies use laser or RF signals to superheat or vaporize the thrombis within the vessel. Emboli loosened during such procedures are removed from the patient through the catheter.
During each of these procedures, there is a risk that emboli dislodged by the procedure will migrate through the circulatory system and cause clots and strokes. Thus, practitioners have approached prevention of escaped emboli through use of occlusion devices, filters, lysing and aspiration techniques. In atherectomy procedures, it is common to remove the cut or abraded material by suction though an aspiration lumen in the catheter or by capturing emboli in a filter or occlusion device positioned distal of the treatment area.
Prior art filters or occlusion devices are associated with either a catheter or guidewire and are positioned distal of the area to be treated. One prior art collapsible filter device includes a filter deployed by a balloon distal of a dilatation balloon on the distal end of a catheter. The filter consists of a filter material secured to resilient ribs. The ribs are mounted at the distal end of the catheter. A filter balloon is located between the catheter exterior and the ribs. Inflation of the filter balloon extends the ribs outward across the vessel to form a trap for fragments loosened by a dilatation balloon. When the filter balloon is deflated, the resilient ribs retract against the catheter to retain the fragments during withdrawal of the catheter.
Another prior art filter arrangement includes several filter elements fastened in spaced apart arrangement along the length of a flexible elongate member. This forms an open-mouthed tubular sock like arrangement to capture the emboli within. The filter is collapsed around the flexible elongate member by wrapping it spirally.
Yet another prior art filter includes a filter mounted on the distal portion of a hollow guidewire or tube. A core wire is used to open and close the filter. The filter has an expandable rim at its proximal end formed by the core wire. The filter is secured at the distal end to the guide wire.
Another prior art device has a filter made from a shape memory material. The device is deployed by moving the proximal end of the filter towards the distal end. It is collapsed and withdrawn by moving a sheath over the filter and then removing the sheath and filter.
A further prior art filter device discloses a compressible polymeric foam filter mounted on a shaft that is inserted over the guidewire. The filter is inserted collapsed within a housing which is removed to deploy the filter once in position. The filter is retracted by inserting a large bore catheter over the shaft and the filter and then removing the shaft, filter and catheter together.
Another prior art filter arrangement has a filter comprised of a distal filter material secured to a proximal framework. This filter is deployed in an umbrella manner with a proximal member sliding along the shaft distally to open the filter and proximally to retract the filter. A large separate filter sheath can be inserted onto the shaft and the filter is withdrawn into the shaft for removal from the patient.
Other known prior art filters are secured to the distal end of a guidewire with a tubular shaft. Stoppers are placed on the guidewire proximal and distal of the filter, allowing the filter to move axially and retract independent of the guidewire. A sheath is used to deploy and compress the filter.
One problem associated with known filter arrangements is that emboli may not be fully contained within the filter. Emboli can build up in the area just proximal of the filter, including any frame portion of the filter assembly. As the filter is closed, emboli not fully contained in the filter can escape around the filter into the circulatory system and cause potentially life threatening strokes. While the blood flow is inhibited when an occlusion device is used during the procedure, emboli can escape as the occlusion device is withdrawn from the treatment area.
Therefore, what is needed is a filter arrangement that addresses the problem of emboli not fully contained in the filter assembly or captured by an occlusion device. Furthermore, there is a need for a filter assembly that is adaptable for delivery with standard PTCA balloon or stent delivery catheters. Additionally there is a need for a filter arrangement that is secure by being mounted at its distal and proximal ends to the delivery member ensuring proper placement of the filter throughout deployment, capture of the emboli and subsequent removal of the filter and captured emboli.
SUMMARY OF THE INVENTION
The present invention is a distal protection device for use in vascular procedures. The distal protection device includes a filter assembly adjacent the distal end of a delivery member used in the procedure. The proximal and distal ends of the filter assembly are fixed to the delivery member such that the ends cannot move longitudinally along the delivery member, but may rotate independent of the delivery member core. The filter assembly includes an expandable frame with a distal portion acting as the emboli filter. The emboli filter is sized sufficiently to expand and cover the cross sectional area of the vessel just distal of the intended treatment area.
The filter assembly may have a variety of configurations. In one embodiment, the frame consists only of the proximal portion of the filter assembly, with the distal half formed from filter material. The frame can have a braided configuration or consist of a sinusoidal ring element adjacent the filter material with helical segments extending from the sinusoidal ring to the delivery member. In another embodiment, the frame forms a basket arrangement and includes the filter material in the distal half of the basket. Such a frame can be configured with a tighter braid on the distal end, thus obviating the need for a filter material.
The filter assembly further includes a moveable sheath for positioning the emboli filter between an expanded position and a collapsed position. The sheath extends over the frame, collapsing the frame and filter of the assembly as they are drawn into the sheath. Likewise, when the frame and filter are removed from the sheath, they will expand so the filter will cover the cross sectional area of the vessel distal of the treatment area.
Alternative embodiments of the filter assembly can include an aspiration lumen extending through the sheath or a flushing lumen extending through the sheath. This allows large emboli to be lysed or aspirated prior to retracting the filter and removing it from the patient.
The sheath is configured to be used with either a rapid exchange arrangement or an over the wire arrangement as well known to those skilled in the art.


REFERENCES:
patent: 4425908 (1984-01-01), Simon
patent: 4723549 (1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Distal protection device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Distal protection device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Distal protection device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2975178

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.