Process for preparing 1,3-alkanediol from epoxide derivative

Organic compounds -- part of the class 532-570 series – Organic compounds – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C568S864000

Reexamination Certificate

active

06348632

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a process for preparing a 1,3-alkanediol through carbonylation of an epoxide derivative. More specifically, the present invention relates to a process for preparing a 1,3-alkanediol, which comprises reacting an epoxide derivative with an alcohol and carbon monoxide in the presence of a catalyst system including a cobalt catalyst and a promoter to afford a 3-hydroxyester, and adding hydrogen to the 3-hydroxyester to prepare the 1,3-alkanediol.
BACKGROUND OF THE INVENTION
An epoxide derivative can be easily converted into a difunctional compound through carbonylation, which is used as an intermediate for preparing an organic compound. In particular, a 3-hydroxyester derivative has two functional groups, and is used as a solvent, a resin, a coating material, a material for medical substances, an intermediate for preparing alkanediols which are used for preparing polyesters, etc. The alkanediols are used as intermediates for coating materials or synthetic organic compounds. A 1,3-diol is an example of an alkanediol. As shown in the following scheme, a 1,3-diol is prepared by hydroformylating an epoxide derivative to prepare a 3-hydroxyaldehyde derivative and adding hydrogen to the 3-hydroxyaldehyde derivative to convert the aldehyde groups into alcohol groups.
The scheme for preparing a 1,3-diol set forth above was disclosed in U.S. Pat. Nos. 5,770,776; 5,723,389; and 5,731,478. On the other hand, in a known process for synthesizing a 3-hydroxyaldehyde showing a high selectivity under low temperature and low pressure, there are used a cobalt catalyst and phosphine oxide ligand as a promoter. However, when phosphine oxide ligand is used as a promoter, the recovery and regeneration of the catalyst become complicated.
U.S. Pat. No. 5,770,776 discloses a process for preparing 1,3-propanediol comprising the steps of (a) contacting ethylene oxide with carbon monoxide and hydrogen in a non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt catalyst and an effective amount of a catalyst promoter, (b) adding an aqueous liquid to the intermediate product mixture and extracting into the aqueous liquid a major portion of the 3-hydroxypropanal so as to provide a first aqueous phase and a first organic phase, (c) separating the first aqueous phase from the first organic phase, (d) adding fresh non-water-miscible solvent to the first aqueous phase and extracting into such solvent a portion of any cobalt catalyst or cobalt-containing derivative thereof present in such aqueous phase, to provide a second aqueous phase and a second organic phase, (e) separating the second aqueous phase from the second organic phase, (f) passing the first organic phase and the second organic phase to the process step (a), (g) contacting the second aqueous phase with hydrogen, and (h) recovering 1,3-propanediol.
U.S. Pat. Nos. 5,723,389 and 5,731,478 disclose a process for preparing an alkanediol comprising the steps of (a) contacting an ethylene oxide with carbon monoxide and hydrogen in a non-water-miscible solvent in the presence of an effective amount of a non-phosphine-ligated cobalt or rhodium catalyst and an effective amount of a cobalt or rhodium porphyrin promoter, (b) adding an aqueous liquid to the intermediate product mixture and extracting into the aqueous liquid a major portion of the hydroxyaldehyde so as to provide an aqueous phase and an organic phase, (c) separating the aqueous phase from the organic phase, (d) contacting the aqueous phase with hydrogen in the presence of a hydrogenation catalyst, and (e) recovering the alkanediol.
U.S. Pat. Nos. 5,135,901 and 4,973,741 disclose another process for obtaining the 3-hydroxyester derivative from the epoxide derivatives. In this process, there is synthesized methyl 3-hydroxypropionate from ethylene oxide by using rhodium and ruthenium as catalysts in the presence of carbon monoxide and alcohol. However, in this process, in spite of the use of expensive catalysts, the yield of the 3-hydroxypropionate is as low as 60%, and by-products are produced in considerable amounts. Further, there is another known process for obtaining a 3-hydroxyester by hydroesterification of the epoxide. In this process also, the yield is as low as 40-60% [(1) Dalcanali, E.; Foa, M. Synthesis 1986, 492. (2) Heck, R. F., J. Am. Chem. Soc., 1963, 85, 1460. (3) Eismann, J. L.; Yamartino, R. L.; Howard, Jr. J. F., J. Org. Chem. 1961, 2102.]. The reason why the yield is so low is that the isomerization reaction of the starting material readily occurs.
Meanwhile, U.S. Pat. Nos. 5,310,948 and 5,359,081 relate to carbonylation of the epoxide, in which the epoxide and carbon monoxide are reacted in the presence of cobalt and pyridine derivatives. The final product is mainly &bgr;-lactone, and the by-product is the 3-hydroxyester.
In the preparation of 1,3-alkanediols for preparing polyesters, if a 3-hydroxyaldehyde is used an intermediate, the quality of the polyester becomes lower because of formation of oligomers and acetals as by-products. On the other hand, if a 3-hydroxyester is used an intermediate, the yield will be lower yield and the catalyst cost will be high.
An effective catalyst system for preparing a 3-hydroxyester derivative from an ethylene oxide through hydroesterification has not been developed yet, and a method of obtaining a 1,3-alkanediol in a high yield has not been developed yet.
SUMMARY OF THE INVENTION
One feature of the present invention is the provision of a novel process for preparing a 1,3-alkanediol, which comprises reacting an epoxide derivative with an alcohol and carbon monoxide in the presence of a catalyst system that includes a cobalt catalyst and a promoter to afford a 3-hydroxyester, and adding hydrogen to the 3-hydroxyester to prepare the 1,3-alkanediol.
Another feature of the invention is the provision of a new catalyst system for preparing 3-hydroxyesters in a high yield by reacting an epoxide derivative with an alcohol and carbon monoxide, which catalyst system includes a cobalt catalyst and an imidazole or a derivative thereof as promoter.
A further feature of the invention is the provision of a process for preparing a 1,3-alkanediol, using a new catalyst system as described herein.
Still another feature of the invention is the provision of a process for preparing 1,3-alkanediols at a lower cost by using an imidazole or a derivative thereof as promoter.
In accordance with one aspect of the present invention, there is provided a process for preparing a 1,3-alkanediol through carbonylation of an epoxide derivative, which includes the steps of (a) reacting an epoxide derivative with an alcohol and carbon monoxide in a solvent at a temperature from about 30 to about 150° C. and at a pressure from about 50 to about 3000 psig in the presence of a catalyst system including an effective amount of a cobalt catalyst and an effective amount of a promoter to afford a reaction product including at least one 3-hydroxyester or derivative thereof in an amount from about 2 to about 95% by weight, (b) separating the reaction product and solvent from the catalyst and promoter, (c) reacting the reaction product and solvent with hydrogen at a temperature from about 30 to about 350° C. and at a pressure from about 50 to about 5000 psig in the presence of a catalyst system for hydrogenation to prepare a hydrogenation product mixture including a 1,3-alkanediol, and (d) recovering the 1,3-alkanediol from the hydrogenation product mixture.
In accordance with another aspect of the present invention, a catalyst system for preparing a 1,3-alkanediol as described herein is provided.
Other objects, features and advantages of the present invention will become apparent it to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the present invention, are given by way of illustration and not limitation. Many changes and modification

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for preparing 1,3-alkanediol from epoxide derivative does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for preparing 1,3-alkanediol from epoxide derivative, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for preparing 1,3-alkanediol from epoxide derivative will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2954310

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.