In-situ method and apparatus for end point detection in...

Optics: measuring and testing – Dimension – Thickness

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S006000

Reexamination Certificate

active

06476921

ABSTRACT:

BRIEF DESCRIPTION OF THE INVENTION
The present invention relates to an in-situ method and apparatus for end point detection during chemical mechanical polishing, and more particularly to a method and apparatus in which localized areas of the surface of a semiconductor wafer or substrate which is undergoing chemical mechanical polishing are monitored to detect the removal of material from the localized wafer surface areas.
BACKGROUND OF THE INVENTION
Manufacture of semiconductors has become increasingly complex as the device densities increase. Such high density circuits typically require closely spaced metal interconnect lines and multiple layers of insulating material, such as oxides, formed atop and between the interconnect lines. Surface planarity of the semiconductor wafer or substrate degrades as the layers are deposited. Generally, the surface of a layer will have a topography that conforms to the sublayer, and as the number of layers increase the non-planarity of the surface becomes more pronounced.
To address the problem, chemical mechanical polishing (CMP) processes are employed. The CMP process removes material from the surface of the wafer to provide a substantially planar surface. More recently, the CMP process is also used to fabricate the interconnecting lines. For example, when depositing copper leads or interconnect lines, a full layer of the metal
13
is deposited on the surface of the wafer
10
having grooves
12
formed in an oxide layer
11
as shown in
FIGS. 1A and 1B
. The metal layer
13
may be deposited by sputtering or vapor deposition or by any other suitable conventional technique. The oxide layer, such as doped or undoped silicon dioxide, is usually formed by chemical vapor deposition (CVD). The metal layer covers the entire surface of the wafer and extends into the grooves. Thereafter, individual leads
16
are defined by removing the metal layer from the surface of the oxide. The CMP process may be used to remove the surface metal leaving the leads
16
in the grooves. The leads are insulated from one another by the intervening oxide layer.
In general, to carry out the CMP process, a chemical mechanical polishing (CMP) machines is used. Many types of CMP machines are used in the semiconductor industry. CMP machines typically employ a rotating polishing platen having a polishing pad thereon, and a smaller diameter rotating wafer carrier which carries the wafer whose surface is to be planarized and/or polished. The surface of the rotating wafer is held or urged against the rotating polishing pad. A slurry is fed to the surface of the polishing pad during polishing of the wafer.
It is desirable to precisely determine when the material has been removed from the upper surface of the wafer during the CMP process. This not only prevents discarding of over-polished wafers, but also minimizes the necessity of re-polishing any under-polished wafers. There are many possible ways of determining when to stop the CMP process. Typical methods include: (1) detecting frictional change as the top layer of metal is polished away to expose the silicon oxide layer by monitoring the current to the platen and carrier motors, and (2) monitoring thermal and acoustic signatures from the polishing pad. Electrical impedance, conductance and capacitance can also be used to determine the presence of the metal layers.
More recently, optical measurement has been used in the art with the CMP process. For example, U.S. Pat. No. 5,838,448 uses interferometry and describes detecting the thickness of a thin layer, or the changes in the film thickness, by measuring reflectance variations caused by a change in the incidence angle of incident light. U.S. Pat. No. 5,835,225 describes using reflectance measurements to determine a particular surface property of the substrate. U.S. Pat. No. 5,433,651 describes a method and apparatus for viewing the wafer during polishing and end-pointing the CMP process when a prescribed change in the in-situ reflectance corresponds to a prescribed condition of the polishing process.
While these techniques have provided improvements to the CMP process, these methods provide average (global) characteristics of the whole wafer surface, rather than those of smaller, localized regions or areas of the wafer. This means that, although one part of the wafer may get polished before another, the global system is not typically able to differentiate between over-polished and under-polished regions of the wafer.
In another prior art technique, as described in U.S. Pat. No. 5,972,787, indicator areas are provided on the wafer. These indicator areas are formed of blocks of parallel metal lines with varying line widths and pattern factors that are chosen to violate existing ground rules in such a way that they will be dished out using the standard consumable set (pad/slurry) of a given metal CMP process. The blocks are then inspected to determine the extent of polishing. While this technique provides for indicating the polishing in certain areas of the wafer, the process requires that the CMP step be interrupted for the inspection to take place. Further, the indicator areas require formation of the blocks which add an additional step to the already complex fabrication process. Accordingly, there is a need for an improved method and apparatus that can continuously, and in-situ, monitor localized regions of the wafer surface during the CMP process.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an in-situ method and apparatus for monitoring localized regions of the wafer surface during the CMP process.
It is another object of the present invention to provide a method and apparatus which continuously monitors the polishing progress at different areas of the wafer, and may also be used to determine the end point for removal of material from the surface of the wafer.
It is a further object of the present invention to provide a method and apparatus which employs the difference in reflectance between different materials on a wafer to monitor the polishing progress and/or end point at selected regions on the wafer surface.
It is a further object of the present invention to provide a method and apparatus which monitors reflectance at various surface areas of the wafer and controls the polishing process at said areas to achieve substantially uniform removal of metal during polishing.
The foregoing and other objects of the invention are achieved by a chemical mechanical polishing method and apparatus in which a rotating polishing platen and polishing pad of a first diameter polishes a wafer carried by a wafer carrier. A window is formed in the polishing platen and pad whereby said window periodically scans across the underside of the wafer. An optical detector, such as a fiber optic cable, transmits light through the window onto the surface of the carrier and receives light reflectance through the window from said wafer surface as it rotates past the window and means are provided for monitoring the reflected light, and for controlling the polishing process at localized regions of the wafer responsive to the reflected light information.
More specifically, the chemical mechanical polishing method and apparatus includes a wafer carrier that has a membrane having a central and concentric pressure chambers or compartments which define corresponding zones or regions on the wafer surface. An actuator is provided to control the pressure applied to the central and concentric compartments and thereby control the rate of removal of material from the wafer surface at each of the corresponding zones, and the actuator is engaged responsive to reflected light received at each of the zones.
In another aspect of the present invention, a method of chemical mechanical polishing is provided comprising the steps of: providing a CMP machine which includes a polishing pad and a wafer carrier having multiple chambers that allow for independently varying pressure within the chambers that urge against a wafer at corresponding localized regions on the wafer; measuring the re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

In-situ method and apparatus for end point detection in... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with In-situ method and apparatus for end point detection in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and In-situ method and apparatus for end point detection in... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2953841

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.