Active solid-state devices (e.g. – transistors – solid-state diode – Field effect device – Having insulated electrode
Reexamination Certificate
2000-08-30
2002-09-17
Quach, T. N. (Department: 2814)
Active solid-state devices (e.g., transistors, solid-state diode
Field effect device
Having insulated electrode
C257S390000, C257S752000
Reexamination Certificate
active
06452223
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to methods of fabricating buried digit lines. Particularly, the present invention relates to a method of fabricating digit lines that are substantially free of stringers. More particularly, the present invention relates to a method of removing stringers from between the straps, plugs, and digit lines of semiconductor devices that include digit lines having widths of less than about 0.25 microns. The present invention also relates to semiconductor devices including buried digit lines that are substantially free of stringers and that have widths of less than about 0.25 microns.
2. Background of Related Art
Conventional semiconductor memory devices typically include an array of memory cells, each of which is in communication with a word line and a digit line. Due to the demand for semiconductor devices of ever-increasing density and ever-decreasing size, the semiconductor industry has sought ways to fabricate smaller, more compactly organized features. Thus, in semiconductor memory devices, the sizes of various features, as well as the spacing therebetween, have decreased. For example, the width of state of the art digit lines has decreased to about 0.25 microns or less. The spacing between adjacent digit lines has similarly decreased to about 0.30 microns or less.
Conventionally, photomask techniques, which typically employ visible to near infrared wavelengths of light, have been used to fabricate the digit lines of semiconductor memory devices. The sizes of features of such photomasks are, however, limited by the wavelengths of electromagnetic radiation employed to define these photomasks. As a result, the sizes and spacing of features defined either directly or indirectly by such photomasks are similarly limited.
Semiconductor memory devices that include digit lines having widths of less than about 0.25 microns and pitches of less than about 0.55 microns have been developed. The semiconductor memory devices, however, are relatively inefficient when compared with semiconductor memory devices having wider digit lines and pitches. The inefficiency of these more compact semiconductor memory devices is due, at least in part, to the potential for electrical shorts between adjacent digit lines. Electrical shorts in semiconductor memory devices with densely packed features may be caused by so-called “stringers” that remain following the definition of digit lines or other electrically conductive components, such as the plugs or straps that may be employed to link a contact to its corresponding digit line. The stringers may extend between adjacent structures or from a first structure to a location undesirably close to an adjacent, second structure. Thus, stringers may create an undesirable electrical path between adjacent digit lines.
Since semiconductor memory devices that include digit lines having widths of about 0.25 microns or less and digit line pitches of about 0.55 microns or less may include stringers that would likely cause electrical shorts between adjacent conductive structures, a significant percentage of the semiconductor memory devices will fail quality control testing. Consequently, fabrication costs are undesirably significantly increased.
Accordingly, there is a need for a method by which semiconductor memory devices that include digit lines with widths of less than about 0.25 microns and digit line pitches of less than about 0.55 microns may be more efficiently fabricated. There is a further need for a method of fabricating semiconductor memory devices of increased feature density which employs conventional techniques and equipment.
BRIEF SUMMARY OF THE INVENTION
The present invention includes a method of fabricating semiconductor memory devices that include digit lines having widths of less than about 0.25 microns and, more particularly, to a method of fabricating semiconductor memory devices having digit lines that are at most about 0.18 microns wide. Through use of the method of the present invention, a semiconductor memory device may include digit lines that are spaced less than about 0.30 microns apart and, more preferably, at most about 0.22 microns apart. Thus, semiconductor memory devices fabricated in accordance with the method of the present invention may have a digit line pitch of less than about 0.55 microns and, more preferably, a digit line pitch of at most about 0.40 microns. The present invention also includes semiconductor memory devices fabricated in accordance with the method of the present invention.
In accordance with the method of the present invention, a bit contact region of a semiconductor memory device, which is disposed between adjacent word lines of the semiconductor memory device, may be doped as known in the art to define a bit contact. If a bit contact was not formed prior to the fabrication of structures on the substrate, the bit contact region may be exposed by known processes, such as mask and etch techniques, and the bit contact region doped, as known in the art. Alternatively, the exposed bit contact region may be doped following definition of the digit lines. As the conductive elements of the word lines between which the bit contacts are disposed may be exposed during exposure of the bit contact regions of the semiconductor memory device, a layer of insulative material, such as silicon oxide, may be disposed over the semiconductor memory device and adjacent the exposed conductive elements of the word lines. The layer of insulative material may be patterned to fabricate sidewall spacers that electrically isolate the conductive elements of the word lines from the trench within which the bit contact is disposed.
A layer of silicon nitride may be disposed over the semiconductor memory device, including over the bit contacts thereof, by known techniques. Such a layer of silicon nitride may be subsequently employed as an etch stop layer.
Layers of digit line material, such as polysilicon and tungsten silicide (“WSi
x
”), may be fabricated or otherwise disposed over the layer of silicon nitride by known processes. A layer of insulative material may be disposed over the layer of tungsten silicide. A mask, such as a photomask, including a plurality of mutually parallel elongate apertures therethrough, may be defined over the semiconductor memory device. The elongate apertures of the mask are preferably aligned over rows of bit contacts and substantially perpendicular to the underlying word lines of the semiconductor memory device. Preferably, the apertures of the mask have a width that facilitates the definition of digit lines that are spaced less than about 0.30 microns apart and, more preferably, that facilitates the definition of digit lines that are spaced at most about 0.22 microns apart from one another. The distance between adjacent apertures of the mask preferably facilitates the definition of digit lines having a width of less than about 0.25 microns from the digit line material and, more preferably, facilitates the definition of digit lines that have a width of at most about 0.18 microns.
Digit lines may be defined through the mask by known etching processes. The etchants employed to define the digit lines may be selected based on their ability to remove the digit line material or materials. If a layer of insulative material was disposed over one of the layers of digit line material, a first etchant is preferably selected to etch the insulative material. Preferably, an etchant that will remove the silicon nitride etch stop layer is also employed to expose the bit contact regions. Preferably, isotropic wet etch processes are employed to facilitate the removal of electrically conductive stringers from between adjacent digit lines. As the digit lines are defined, digit line materials are removed from above the bit contact regions. If the use of a photomask is desired, two masks may be employed in these patterning processes so as to prevent distortion of the photomasks. A first mask could be employed to define the digit lines and cover the peripheries
Quach T. N.
TraskBritt
LandOfFree
Methods of fabricating buried digit lines and semiconductor... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Methods of fabricating buried digit lines and semiconductor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods of fabricating buried digit lines and semiconductor... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2903526